dc.contributorDe la hoz Franco, Emiro
dc.contributorMendoza Palechor, Fabio
dc.creatorCamargo García, Aníbal José
dc.date2020-09-08T23:29:10Z
dc.date2020-09-08T23:29:10Z
dc.date2020
dc.date.accessioned2023-10-03T20:09:06Z
dc.date.available2023-10-03T20:09:06Z
dc.identifierhttps://hdl.handle.net/11323/7077
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174563
dc.descriptionThe main objective of this research project is to create a model for the prediction of undergraduate student desertion at the Universidad de la Costa - CUC, based on the analysis of different socioeconomic and academic factors. The study required the execution of a series of phases: characterization, experimentation, development and evaluation. During the characterization phase, a dataset was constructed, based on the compilation of demographic, cultural, social, family, educational, socioeconomic status and psychological profile data of each student, for the periods between 2013-1 and 2018-2. Such information was collected from the registration forms that students fill out when they enter the institution, a total of 1,606 unique student records were collected. During the experimental phase, different machine learning techniques were evaluated for the categories: Bayesian networks, support vector machines, and decision trees. The algorithm with which the best hit rate was obtained was Random forest (from the decision tree category), with an accuracy of 84.8%. In the development phase, the model was integrated into an application that allows us to predict whether a student or a group of students will drop out or not. Finally, in the evaluation phase, the application was subjected to different types of tests to evaluate both the functionality of the graphic interface with the final user and the success rate in terms of desertion prediction, the results have coincided with the precision obtained in the experimental phase.
dc.descriptionEl objetivo principal de este proyecto de investigación es crear un modelo para la predicción de la deserción de estudiantes de pregrado en la Universidad de la Costa - CUC, a partir del análisis de diferentes factores socioeconómicos y académicos. El estudio requirió de la ejecución de una serie de fases: caracterización, experimentación, desarrollo y evaluación. Durante la fase de caracterización se construyó un conjunto de datos (dataset), a partir de la compilación de los datos demográficos, culturales, sociales, familiares, educativos, estatus socioeconómico y perfil psicológico de cada estudiante, de los periodos comprendidos entre 2013-1 y 2018-2. Tal información fue recopilada a partir de los formatos de inscripción que diligencian los estudiantes cuando ingresan a la institución, un total de 1.606 registros únicos de estudiantes fueron recopilados. Durante la fase de experimentación se evaluaron distintas técnicas de aprendizaje automático (Machine Learning) de las categorías: redes bayesianas, máquinas de soporte vectorial y árboles de decisiones. El algoritmo con el cual se obtuvo la mejor tasa de aciertos fue Random forest (de la categoría árboles de decisión), con una exactitud del 84.8%. En la fase de desarrollo se integró el modelo a una aplicación que permite predecir si un estudiante o un grupo de ellos desertará o no. Por último, en la fase de evaluación se sometió la aplicación a diferentes tipos de pruebas para valorar tanto la funcionalidad de la interface gráfica con el usuario final como la tasa de aciertos en cuanto a la predicción de la deserción, los resultados han coincidido con la precisión obtenida en la fase experimental.
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherMaestría en Ingeniería
dc.relationAboubakar, M., Kellil, M., Bouabdallah, A., & Roux, P. (2019). Toward Intelligent Reconfiguration of RPL Networks using Supervised Learning. IFIP Wireless Days, 2019- April, 1–4. https://doi.org/10.1109/WD.2019.8734236
dc.relationAggarwal, C. (2015). Data Mining: The Textbook. Springer International. https://doi.org/10.1007/978-3-319-14142-8 ISBN
dc.relationAhuja, R., & Kankane, Y. (2017). Predicting the probability of student’s degree completion by using different data mining techniques. 2017 Fourth International Conference on Image Information Processing (ICIIP), 1–4. https://doi.org/10.1109/ICIIP.2017.8313763
dc.relationAlkhasawneh, R., & Hobson, R. (2011). Modeling student retention in science and engineering disciplines using neural networks. 2011 IEEE Global Engineering Education Conference, EDUCON 2011, 660–663. https://doi.org/10.1109/EDUCON.2011.5773209
dc.relationAsif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers & Education, 113, 177–194. https://doi.org/10.1016/j.compedu.2017.05.007
dc.relationAskinadze, A., & Conrad, S. (2017). Application of the Dynamic Time Warping Distance for the Student Drop-out Prediction on Time Series Data. Proceedings of the 10th International Conference on Educational Data Mining, 342–343.
dc.relationAzevedo, A., & Santos, M. F. (2008). KDD, semma and CRISP-DM: A parallel overview. MCCSIS’08 - IADIS Multi Conference on Computer Science and Information Systems; Proceedings of Informatics 2008 and Data Mining 2008, June, 182–185.
dc.relationAziz, A. A., Ismail, N. H., Ahmad, F., & Hassan, H. (2015). A framework for students’ academic performance analysis using naïve bayes classifier. Jurnal Teknologi, 75(3), 13–19. https://doi.org/10.11113/jt.v75.5037
dc.relationBarbosa Manhães, L. M., Serra da Cruz, S. M., & Zimbrão, G. (2014). WAVE: an Architecture for Predicting Dropout in Undergraduate Courses using EDM. Proceeding SAC ’14 Proceedings of the 29th Annual ACM Symposium on Applied Computing, 243–247. https://doi.org/10.1145/2554850.2555135
dc.relationBarker, K., Trafalis, T., & Reed Rhoads, T. (2004). LEARNING FROM STUDENT DATA. Proceedings of the 2004 Systems and Information Engineering Design Symposium Matthew. https://doi.org/10.1109/SIEDS.2004.239819
dc.relationBarnes, T., Desmarais, M., Romero, C., & Ventura, S. (2009). EDM’09 - Educational Data Mining 2009: 2nd International Conference on Educational Data Mining. In EDM’09 - Educational Data Mining 2009: 2nd International Conference on Educational Data Mining.
dc.relationBayer, J., Bydzovská, H., Géryk, J., Obsivac, T., & Popelínský, L. (2012). Predicting drop-out from social behaviour of students. Proceedings of the 5th International Conference on Educational Data Mining, Dm, 103–109.
dc.relationBeaulac, C., & Rosenthal, J. S. (2019). Predicting University Students ’ Academic Success and Choice of Major using Random Forests.
dc.relationBeltran, B. (2016). MINERÍA DE DATOS (Vol. 30, Issue 1). https://doi.org/10.1016/0032- 0633(82)90071-X
dc.relationBetancourt, G. A. (2005). LAS MÁQUINAS DE SOPORTE VECTORIAL (SVMs). Scientia Et Technica, XI(27), 67–72. https://doi.org/10.22517/23447214.6895
dc.relationBirjali, M., Beni-hssane, A., & Erritali, M. (2018). Learning with Big Data Technology: The Future of Education. 565. https://doi.org/10.1007/978-3-319-60834-1
dc.relationBoser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, 144–152. https://doi.org/10.1145/130385.130401
dc.relationBrown, M. S. (2014). Data Mining for Dummies. https://doi.org/10.1007/978-1-4614-7669-6
dc.relationBurgueño, M. J., García-Bastos, J. L., & González-Buitrago, J. M. (1995). ROC curves in the evaluation of diagnostic tests. Medicina Clínica, 104(17), 661–670.
dc.relationCambruzzi, W., Rigo, S. J., & Barbosa, J. L. V. (2015). Dropout prediction and reduction in distance education courses with the learning analytics multitrail approach. Journal of Universal Computer Science, 21(1), 23–47.
dc.relationCarmona Suárez, E. J. (2014). Máquinas de Vectores Soporte (SVM). Dpto. de Inteligencia Artificial, ETS de Ingeniería Inforática, Universidad Nacional de Educación a Distancia (UNED), 1–25. http://www.ia.uned.es/~ejcarmona/publicaciones/[2013-Carmona] SVM.pdf
dc.relationCastaño, E., Gallón, S., Gómez, K., & Vásquez, J. (2004). Deserción estudiantil universitaria una aplicación de modelos de duración. Lecturas de Economia, 60(60), 39–65.
dc.relationChai, K. E. K., & Gibson, D. (2015). Predicting the risk of attrition for undergraduate students with time based modelling. Proceedings of the 12th International Conference on Cognition and Exploratory Learning in the Digital Age, CELDA 2015, Celda, 109–116.
dc.relationCheewaprakobkit, P. (2013). Study of factors analysis affecting academic achievement of undergraduate students in international program. Lecture Notes in Engineering and Computer Science, 2202, 332–336.
dc.relationChristian, T. M., & Ayub, M. (2014). Exploration of classification using NBTree for predicting students’ performance. Proceedings of 2014 International Conference on Data and Software Engineering, ICODSE 2014, 1–6. https://doi.org/10.1109/ICODSE.2014.7062654 Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Mach. Learn. , 20 (3), 44(13), 273– 297. Predicting Students Drop Out A Case Study, (2009).
dc.relationDelen, D. (2010). A comparative analysis of machine learning techniques for student retention management. Decision Support Systems, 49(4), 498–506. https://doi.org/10.1016/j.dss.2010.06.003
dc.relationDelen, D. (2011). Predicting student attrition with data mining methods. Journal of College Student Retention: Research, Theory and Practice, 13(1), 17–35. https://doi.org/10.2190/CS.13.1.b
dc.relationDevasia, T., Vinushree, T. P., & Hegde, V. (2016). Prediction of students performance using Educational Data Mining. Proceedings of 2016 International Conference on Data Mining and Advanced Computing, SAPIENCE 2016, 91–95. https://doi.org/10.1109/SAPIENCE.2016.7684167
dc.relationDharmawan, T., Ginardi, H., & Munif, A. (2018). Dropout Detection Using Non-Academic Data. Proceedings - 2018 4th International Conference on Science and Technology, ICST 2018, 1, 1–4. https://doi.org/10.1109/ICSTC.2018.8528619
dc.relationEdwards, W., & Fasolo, B. (2001). Decision Technology. 581–606.
dc.relationFernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Erven, G. Van. (2019). Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil. Journal of Business Research, 94(August 2017), 335–343. https://doi.org/10.1016/j.jbusres.2018.02.012
dc.relationFriedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifier. 131–163.
dc.relationGandhi, R. (2018). Support Vector Machine - Introduction to Machine Learning Algorithms. https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learningalgorithms-934a444fca47
dc.relationGarcía, J. G., Puga, J. L., Cano Guillén, C. J., Gea, A. B., & de la Fuente Sánchez, L. (2006). Aplicación de las redes bayesianas al modelado de las actitudes emprendedoras. IV Congreso de Metodología de Encuestas, August 2015, 235–242.
dc.relationGulati, H. (2015). Predictive analytics using data mining technique. 2015 International Conference on Computing for Sustainable Global Development, INDIACom 2015, 713–716.
dc.relationGüner, N., Yaldir, A., Gündüz, G., Çomak, E., Tokat, S., & Iplikçi, S. (2014). Predicting academically at-risk engineering students: A soft computing application. Acta Polytechnica Hungarica, 11(5), 199–216. https://doi.org/10.12700/aph.11.05.2014.05.12
dc.relationGuzmán Ruiz, C., Muriel Durán, D., & Franco Gallego, J. (2009). Deserción estudiantil en la educación superior colombiana. Metodología de seguimiento, diagnóstico y elementos para su prevención. http://www.mineducacion.gov.co/sistemasdeinformacion/1735/articles- 254702_libro_desercion.pdf
dc.relationHan, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. https://doi.org/10.1109/ICMIRA.2013.45
dc.relationHasbun, T., Araya, A., & Villalon, J. (2016). Extracurricular activities as dropout prediction factors in higher education using decision trees. Proceedings - IEEE 16th International Conference on Advanced Learning Technologies, ICALT 2016, 242–244. https://doi.org/10.1109/ICALT.2016.66
dc.relationHeredia, D., Amaya, Y., & Barrientos, E. (2015). Student Dropout Predictive Model Using Data Mining Techniques. IEEE Latin America Transactions, 13(9), 3127–3134. https://doi.org/10.1109/TLA.2015.7350068
dc.relationHernandez Gonzalez, A. G., Melendez Armenta, R. A., Morales Rosales, L. A., Garcia Barrientos, A., Tecpanecatl Xihuitl, J. L., & Algredo, I. (2016). Comparative Study of Algorithms to Predict the Desertion in the Students at the ITSM-Mexico. IEEE Latin America Transactions, 14(11), 4573–4578. https://doi.org/10.1109/TLA.2016.7795831
dc.relationHoffait, A. S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1–11. https://doi.org/10.1016/j.dss.2017.05.003
dc.relationHuber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications - A holistic extension to the CRISP-DM model. Procedia CIRP, 79, 403–408. https://doi.org/10.1016/j.procir.2019.02.106
dc.relationJin, Q., Imbrie, P. K., Lin, J. J. J., & Chen, X. (2011). A multi-outcome hybrid model for predicting student success in engineering. ASEE Annual Conference and Exposition, Conference Proceedings.
dc.relationKabakchieva, D., Stefanova, K., & Kisimov, V. (2011). Analyzing university data for determining student profiles and predicting performance. EDM 2011 - Proceedings of the 4th International Conference on Educational Data Mining.
dc.relationKalles, D., & Pierrakeas, C. (2006a). Analyzing student performance in distance learning with genetic algorithms and decision trees. Applied Artificial Intelligence, 20(8), 655–674. https://doi.org/10.1080/08839510600844946
dc.relationKalles, D., & Pierrakeas, C. (2006b). Using genetic algorithms and decision trees for a posteriori analysis and evaluation of tutoring practices based on student failure models. IFIP International Federation for Information Processing, 204(August), 9–18. https://doi.org/10.1007/0-387-34224-9_2
dc.relationKingsford, C., & Salzberg, S. L. (2008). What are decision trees. Nat Biotechnol, 23(1), 1–7. https://doi.org/10.1038/nbt0908-1011
dc.relationKotsiantis, S. B., & Pintelas, P. E. (2005). Predicting students’ marks in Hellenic Open University. Proceedings - 5th IEEE International Conference on Advanced Learning Technologies, ICALT 2005, 2005, 664–668. https://doi.org/10.1109/ICALT.2005.223
dc.relationKotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411–426. https://doi.org/10.1080/08839510490442058
dc.relationKrishna Kishore, K. V., Venkatramaphanikumar, S., & Alekhya, S. (2014). Prediction of student academic progression: A case study on Vignan University. 2014 International Conference on Computer Communication and Informatics: Ushering in Technologies of Tomorrow, Today, ICCCI 2014, 2, 1–6. https://doi.org/10.1109/ICCCI.2014.6921731
dc.relationKumar Baradwaj, B., & Pal, S. (2011). Mining Educational Data to Analyze Students’ Performance. JACSA) International Journal of Advanced Computer Science and Applications, 02.
dc.relationLee, S., & Chung, J. Y. (2019). The Machine Learning-Based Dropout Early Warning System for Improving the Performance of Dropout Prediction. Applied Sciences, 9(15), 3093. https://doi.org/10.3390/app9153093
dc.relationLesinski, G., Corns, S., & Dagli, C. (2016). Application of an Artificial Neural Network to Predict Graduation Success at the United States Military Academy. Procedia Computer Science, 95, 375–382. https://doi.org/10.1016/j.procs.2016.09.348
dc.relationLópez de Ullibarri, G. I., & Píta Fernández, S. (1998). Curvas ROC. Cad Aten Primaria, 5(4), 229–235.
dc.relationLykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers and Education, 53(3), 950–965. https://doi.org/10.1016/j.compedu.2009.05.010
dc.relationManhães, L. M. B., Da Cruz, S. M. S., & Zimbrão, G. (2014). The impact of high dropout rates in a large public brazilian university a quantitative approach using educational data mining. CSEDU 2014 - Proceedings of the 6th International Conference on Computer Supported Education, 3, 124–129. https://doi.org/10.5220/0004958601240129
dc.relationMárquez-Vera, C., Cano, A., Romero, C., Noaman, A. Y. M., Mousa Fardoun, H., & Ventura, S. (2016). Early dropout prediction using data mining: A case study with high school students. Expert Systems, 33(1), 107–124. https://doi.org/10.1111/exsy.12135
dc.relationMárquez-Vera, C., Romero Morales, C., & Ventura Soto, S. (2013). Predicting school failure and dropout by using data mining techniques. Revista Iberoamericana de Tecnologias Del Aprendizaje, 8(1), 7–14. https://doi.org/10.1109/RITA.2013.2244695
dc.relationMayilvaganan, M., & Kalpanadevi, D. (2015). Comparison of classification techniques for predicting the performance of students academic environment. 2014 International Conference on Communication and Network Technologies, ICCNT 2014, 2015-March, 113–118. https://doi.org/10.1109/CNT.2014.7062736
dc.relationMinisterio de Educación de Colombia. (2006). La Revolución Educativa 2002 – 2006. Media, 1– 6.
dc.relationMinisterio de Educación de Colombia. (2019). Qué es el SPADIES. https://www.mineducacion.gov.co/sistemasinfo/spadies/Informacion- Institucional/254648:Que-es-el-SPADIES
dc.relationMiranda, M. A., & Guzmán, J. (2017). Análisis de la deserción de estudiantes universitarios usando técnicas de minería de datos. Formacion Universitaria, 10(3), 61–68. https://doi.org/10.4067/S0718-50062017000300007
dc.relationMishra, A. (2018). Metrics to Evaluate your Machine Learning Algorithm. https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithmf10ba6e38234
dc.relationMishra, T., Kumar, D., & Gupta, S. (2014). Mining students’ data for prediction performance. International Conference on Advanced Computing and Communication Technologies, ACCT, 255–262. https://doi.org/10.1109/ACCT.2014.105
dc.relationMitchell, T. M. (1997). Machine Learning. In McGraw-Hill Science/Engineering/Math.
dc.relationMoseley, L. G., & Mead, D. M. (2008). Predicting who will drop out of nursing courses: A machine learning exercise. Nurse Education Today, 28(4), 469–475. https://doi.org/10.1016/j.nedt.2007.07.012
dc.relationMustafa, M. N., Chowdhury, L., & Kamal, M. S. (2012). Students dropout prediction for intelligent system from tertiary level in developing country. 2012 International Conference on Informatics, Electronics and Vision, ICIEV 2012, 113–118. https://doi.org/10.1109/ICIEV.2012.6317441
dc.relationOskouei, R. J., & Askari, M. (2014). Predicting Academic Performance with Applying Data Mining Techniques (Generalizing the results of two Different Case Studies). Computer Engineering and Applications Journal, 3(2), 79–88. https://doi.org/10.18495/comengapp.v3i2.81
dc.relationOsmanbegovi, E. (2012). Data Mining Approach for Predicting Student Performance. Economic Review : Journal of Economics and Business, X(1), 3–12.
dc.relationPeralta, B., Poblete, T., & Caro, L. (2017). Automatic feature selection for desertion and graduation prediction: A chilean case. Proceedings - International Conference of the Chilean Computer Science Society, SCCC. https://doi.org/10.1109/SCCC.2016.7836055
dc.relationPereira, R. T., Romero, A. C., & Toledo, J. J. (2013). Extraction student dropout patterns with data mining techniques in undergraduate programs. IC3K 2013; KDIR 2013 - 5th International Conference on Knowledge Discovery and Information Retrieval and KMIS 2013 - 5th International Conference on Knowledge Management and Information Sharing, Proc., 136–142. https://doi.org/10.5220/0004543001360142
dc.relationPérez, A., Grandón, E. E., Caniupán, M., & Vargas, G. (2019). Comparative Analysis of Prediction Techniques to Determine Student Dropout: Logistic Regression vs Decision Trees. Proceedings - International Conference of the Chilean Computer Science Society, SCCC, 2018-Novem. https://doi.org/10.1109/SCCC.2018.8705262
dc.relationPerez, B., Castellanos, C., & Correal, D. (2018). Applying Data Mining Techniques to Predict Student Dropout: A Case Study. 2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence, ColCACI 2018 - Proceedings, 1–6. https://doi.org/10.1109/ColCACI.2018.8484847
dc.relationPerez, M. (2014). Minería de datos a treves de ejemplos. 22. http://www.rclibros.es/pdf/capitulo_mineria.pdf
dc.relationPicard, R. W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., & Strohecker, C. (2004). Affective learning - a manifesto. BT Technology Journal, 22(4), 253–269. https://doi.org/10.1023/B:BTTJ.0000047603.37042.33
dc.relationPradeep, A., Das, S., & Kizhekkethottam, J. J. (2015). Students dropout factor prediction using EDM techniques. Proceedings of the IEEE International Conference on Soft-Computing and Network Security, ICSNS 2015, 1–7. https://doi.org/10.1109/ICSNS.2015.7292372
dc.relationQuadri, M., & Kalyankar, D. (2010). Drop out feature of student data for academic performance using decision tree techniques. Global Journal of Computer, 10(2), 2–5. http://computerresearch.org/stpr/index.php/gjcst/article/viewArticle/128
dc.relationQuinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/bf00116251
dc.relationRecuero, P. (2018). Machine Learning a tu alcance: La matriz de confusión. https://empresas.blogthinkbig.com/ml-a-tu-alcance-matriz-confusion/
dc.relationSalazar, A., Gosálbez, J., Bosch, I., Miralles, R., & Vergara, L. (2004). A case study of knowledge discovery on academic achievement, student desertion and student retention. ITRE 2004 - 2nd International Conference on Information Technology: Research and Education - Proceedings, January, 150–154. https://doi.org/10.1109/itre.2004.1393665
dc.relationSangodiah, A., Beleya, P., Muniandy, M., Heng, L. E., & Ramendran Spr, C. (2015). Minimizing student attrition in higher learning institutions in Malaysia using support vector machine. Journal of Theoretical and Applied Information Technology, 71(3), 377–385.
dc.relationSantana, M. A., Costa, E. B., Neto, B. F. S., Silva, I. C. L., & Rego, J. B. A. (2015). A predictive model for identifying students with dropout profiles in online courses. CEUR Workshop Proceedings, 1446.
dc.relationŞara, N. B., Halland, R., Igel, C., & Alstrup, S. (2015). High-school dropout prediction using machine learning: A Danish large-scale study. 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015 - Proceedings, April, 319–324.
dc.relationSaravanan, R., & Sujatha, P. (2018). Algorithms : A Perspective of Supervised Learning Approaches in Data Classification. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Iciccs, 945–949.
dc.relationSarker, F., Tiropanis, T., & Davis, H. C. (2014). Linked data, data mining and external open data for better prediction of at-risk students. Proceedings - 2014 International Conference on Control, Decision and Information Technologies, CoDIT 2014, 652–657. https://doi.org/10.1109/CoDIT.2014.6996973
dc.relationSegura-Morales, M., & Loza-Aguirre, E. (2018). Using Decision Trees for Predicting Academic Performance Based on Socio-Economic Factors. Proceedings - 2017 International Conference on Computational Science and Computational Intelligence, CSCI 2017, 1132– 1136. https://doi.org/10.1109/CSCI.2017.197
dc.relationShahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72(February 2016), 414–422. https://doi.org/10.1016/j.procs.2015.12.157
dc.relationSharabiani, A., Karim, F., Sharabiani, A., Atanasov, M., & Darabi, H. (2014). An enhanced bayesian network model for prediction of students’ academic performance in engineering programs. IEEE Global Engineering Education Conference, EDUCON, April, 832–837. https://doi.org/10.1109/EDUCON.2014.6826192
dc.relationSiri, A. (2015). Predicting Students’ Dropout at University Using Artificial Neural Networks. Italian Journal of Sociology of Education, 7(2), 225–247.
dc.relationSolis, M., Moreira, T., Gonzalez, R., Fernandez, T., & Hernandez, M. (2018). Perspectives to Predict Dropout in University Students with Machine Learning. 2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018 - Proceedings. https://doi.org/10.1109/IWOBI.2018.8464191
dc.relationTair, M. M. A. (2015). Mining Educational Data to Improve Students ’ Performance : A Case Study Mining Educational Data t o Improve Students ’ Performance : A Case Study. October.
dc.relationThomas, E. H., & Galambos, N. (2004). What satisfies students? Mining student-opinion data with regression and decision tree analysis. Research in Higher Education, 45(3), 251–269. Timarán Pereira, S. R., Hernández Arteaga, I., Caicedo Zambrano, S. J., Hidalgo Troya, A., & Alvarado
dc.relationPérez, J. C. (2016). Descubrimiento de patrones de desempeño académico con árboles de decisión en las competencias genéricas de la formación profesional. Descubrimiento de Patrones de Desempeño Académico Con Árboles de Decisión En Las Competencias Genéricas de La Formación Profesional, 2016, 63–86. https://doi.org/10.16925/9789587600490
dc.relationTsai, C. F., Tsai, C. T., Hung, C. S., & Hwang, P. Sen. (2011). Data mining techniques for identifying students at risk of failing a computer proficiency test required for graduation. Australasian Journal of Educational Technology, 27(3), 481–498. https://doi.org/10.14742/ajet.956
dc.relationUniversidad Pedagógica y Tecnológica de Colombia. (2004). Unidad 1 Estadistica Descriptiva. https://virtual.uptc.edu.co/ova/estadistica/docs/libros/h_men_prob_est/lecciones_html/un1/1 _8_3.html
dc.relationVeitch, W. R. (2004). Identifying Characteristics of High School Dropouts: Data Mining with A Decision Tree Model. Online Submission, 1–11.
dc.relationWirth, R. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 24959, 29–39. https://doi.org/10.1.1.198.5133
dc.relationYehuala, M. A. (2015). Application Of Data Mining Techniques For Student Success And Failure Prediction The Case Of DebreMarkos University. International Journal of Scientific & Technology Research, 4(4), 91–94.
dc.relationZaki, M., & Meira, W. J. (2013). Data Mining and Analysis: Fundamental Concepts and Algorithms. https://doi.org/10.1145/3054925
dc.relationZeng, W., Chin, S.-C., Zeimet, B., Kuang, R., & Chi, C.-L. (2017). Dropout Prediction in Home Care Training. Proceedings of the 10th International Conference on Educational Data Mining, 442–447.
dc.relationZhang, Y., & Oussena, S. (2010). USE DATA MINING TO IMPROVE STUDENT RETENTION IN HIGHER EDUCATION – A CASE STUDY. Middlesex University Research Repository.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectHigher education
dc.subjectDropout
dc.subjectData mining
dc.subjectDecision tree
dc.subjectClassification
dc.subjectPrediction
dc.subjectEducación superior
dc.subjectDeserción
dc.subjectMinería de datos
dc.subjectÁrboles de decisión
dc.subjectClasificación
dc.subjectPredicción
dc.titleModelo para la predicción de la deserción de estudiantes de pregrado, basado en técnicas de minería de datos
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución