dc.creatorSilva Oliveira, Luis Felipe
dc.creatorPinto, Diana
dc.creatorNeckel, Alcindo
dc.creatorSilva Oliveira, Marcos Leandro
dc.date2020-09-07T15:33:48Z
dc.date2020-09-07T15:33:48Z
dc.date2020-08-05
dc.date.accessioned2023-10-03T20:06:35Z
dc.date.available2023-10-03T20:06:35Z
dc.identifier1674-9871
dc.identifierhttps://hdl.handle.net/11323/7072
dc.identifierhttps://doi.org/10.1016/j.gsf.2020.07.003
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174252
dc.descriptionAir pollution monitoring is one of the most important features in contamination risk management. This is because many of the compounds contained within air pollution present a serious risk both for the preservation of open air cultural heritage and for human health. New particle formation is a major contributor to urban pollution, but how it occurs in cities is often puzzling. As more and more people enjoy an increased quality of life through outdoor activity, managing outdoor air quality is vital. This study presents the application of a low-cost system for monitoring the current level of road traffic passengers’ exposure to particulate air contamination. The global rise in tourism also leads to apprehension about its probable destructive influence on various aspects of global preservation. One of the major risks encountered by tourists, stemming from modes of transport, are nanoparticles (NPs) ( 100 nm) and ultra-fine particles (UFPs) (100–1000 nm) consisting of potentially hazardous elements (PHEs). This study examines Steen Castle, a medieval fortress located in Antwerp, Belgium. Significant NPs with PHEs, were found in the air sampled in this area. The self-made passive sampler (LSPS) described in this study, consisting of retainers specially designed for advanced microscopic analysis, is used for the first time as a simple way to characterize the surrounding atmospheric contamination caused by NPs and UFPs, without the need of other commonly employed more expensive particulate focused active samplers such as cascade impactors. This study aims to assess the result of the utilization of a low-cost, LSPS, to determine outdoor NPs and UFPs in a Belgian urban (Steen Castle) and rural area (Fort van Schoten). This work is the first to detail the usefulness of LSPS for the evaluation of Belgium’s outdoor air for NPs and UFPs, which contain PHEs.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAgudelo-Castan~eda, D.M., Teixeira, E.C., Schneider, I.L., Lara, S.R., Silva, L.F., 2017. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM 1.0 of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ. Pollut. 224, 158–170.
dc.relationAgudelo-Castan~eda, D., Teixeira, E., Schneider, I., Pereira, F., Oliveira, M., Taffarel, S., Sehn, J., Ramos, C., Silva, L.F., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.
dc.relationAlsamhi, S.H., Ma, O., Ansari, M.S., Meng, Q., 2019. Greening internet of things for greener and smarter cities: a survey and future prospects: a survey and future prospects. Telecommun. Syst. 72 (4), 609–632.
dc.relationArjonilla, P., Ayora-Can~ada, M.J., Rubio Domene, R., de la Torre-Lopez, M.J., DomínguezVidal, A., 2019. Romantic restorations in the Alhambra monument: spectroscopic characterization of decorative plasterwork in the Royal Baths of Comares. J. Raman Spectrosc. 50, 184–192.
dc.relationArjonilla, P., Domínguez-Vidal, A., Correa-Gomez, E., Ayora-Can~ada, M.J., Colombini, M.P., 2018. Characterization of organic materials in the decoration of ornamental structures in the Alhambra monumental ensemble using gaschromatography/mass spectrometry (GC/MS). Microchem. J. 140, 14–23.
dc.relationAzam, M., Alam, M.M., Hafeez, M.H., 2018. Effect of tourism on environmental pollution: further evidence from Malaysia, Singapore and Thailand. J. Clean. Prod. 190, 330–338.
dc.relationBardelli, F., Cattaruzza, E., Gonella, F., Rampazzo, G., Valotto, G., 2011. Characterization of road dust collected in Traforo del San Bernardo highway tunnel: Fe and Mn speciation. Atmos. Environ. 45 (35), 6459–6468.
dc.relationBrtnický, M., Pecina, V., Vasinova, G.M., Klimanek, M., Kynický, J., 2020. The impact of tourism on extremely visited volcanic island: link between environmental pollution and transportation modes. Chemosphere 249, 126118.
dc.relationCiarkowska, K., 2018. Assessment of heavy metal pollution risks and enzyme activity of meadow soils in urban area under tourism load: a case study from Zakopane (Poland). Environ. Sci. Pollut. Control Ser. 25 (14), 13709–13718.
dc.relationCobo-Golpe, M., Ramil, M., Cela, R., Rodríguez, I., 2020. Portable dehumidifiers condensed water: a novel matrix for the screening of semi-volatile compounds in indoor air. Chemosphere 251, 1–12.
dc.relationDavenport, J., Davenport, J.L., 2006. The impact of tourism and personal leisure transport on coastal environments: a review. Estuar. Coast Shelf Sci. 67 (2), 280–292.
dc.relationDotto, G.L., Cadaval, T.R.S., Pinto, L.A.A., 2012. Use of Spirulina platensis micro and nanoparticles for the removal synthetic dyes from aqueous solutions by biosorption. Process Biochem. 47 (9), 1335–1343. https://doi.org/10.1016/ J.PROCBIO.2012.04.029.
dc.relationDotto, G.L., Cunha, J.M., Calgaro, C.O., Bertuol, D.A., 2015a. Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption. J. Hazard Mater. 295, 29–36. https://doi.org/10.1016/ J.JHAZMAT.2015.04.009.
dc.relationDotto, G.L., Sharma, S.K., Pinto, L.A.A., 2015b. Biosorption of organic dyes: research opportunities and challenges. Green Chem. In: Sharma, S.K. (Ed.), Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Scrivener Publishing, pp. 295–329. https://doi.org/10.1002/9781118721001.ch8.
dc.relationDotto, G.L., de Souza, V.C., de Moura, J.M., de Moura, C.M., de Almeida Pinto, L.A., 2011. Influence of drying techniques on the characteristics of chitosan and the quality of biopolymer films. Dry. Technol. 29 (15), 1784–1791. https://doi.org/10.1080/ 07373937.2011.602812.
dc.relationDotto, G.L., Rodrigues, F.K., Tanabe, E.H., Frohlich, R., Bertuol, D.A., Martins, T.R.,€ Foletto, E.L., 2016. Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 4 (3), 3230–3239. https://doi.org/10.1016/J.JECE.2016.07.004.
dc.relationEuropean Environment Agency (EEA), 2018. Air Quality in Europe — 2018 Report. EEA Report no 12/2018. Publications Office of the European Union, Luxembourg. https:// doi.org/10.2800/777411.
dc.relationGasparotto, G., Tavares, L.S., Silva, T.C., Maia, L.J.Q., Carvalho, J.F., 2018. Structural and spectroscopic properties of Eu3þ doped Y4Al2O9 compounds through a soft chemical process. J. Lumin. 204, 513–519.
dc.relationHovington, P., Timoshevskii, V., Burgess, S., Demers, H., Statham, P., Gauvin, R., Zaghib, K., 2016. Can we detect Li K X-ray in lithium compounds using energy dispersive spectroscopy? Scanning 38 (6), 571–578.
dc.relationKulmala, M., Kerminen, V.-M., Pet€aj€a, T., Ding, A.J., Wang, L., 2017. Faraday Discuss 200, 271–288.
dc.relationLi, H., Sodoudi, S., Liu, J., Tao, W., 2020. Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmos. Res. 241 (1), 104957.
dc.relationMadureira-carvalho, A., Ribeiro, H., Newman, G., Brewer, M.J., Guedes, A., Abreu, I., Noronha, F., Dawson, L., 2018. Geochemical analysis of sediment samples for forensic purposes: characterisation of two river beaches from the Douro River, Portugal. Aust. J. Forensic Sci. 52 (2), 222–234.
dc.relationMassas, I., Ioannou, D., Kalivas, D., Gasparatos, D., 2016. Distribution of heavy metals concentrations in soils around the international Athens airport (Greece). An assessment on preliminary data. Bull. Geol. Soc. Greece 50 (4), 2231–2240. McDonald, J.D., Eide, I., Seagrave, J., Zielinska, B., Whitney, K., Lawson, D.R., Mauderly, J.L., 2004. Relationship between composition and toxicity of motor vehicle emission samples. Environ. Health Perspect. 112, 1527–1538.
dc.relationMcMurry, P.H., Fink, M., Sakurai, H., Stolzenburg, M.R., Mauldin III, R.L., Smith, J., Eisele, F., Moore, K., Sjostedt, S., Tanner, D., Huey, L.G., Nowak, J.B., Edgerton, E., Voisin, D., 2005. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere. J. Geophys. Res. D 110. D22S02 (2005).
dc.relationMoura, J.M., Farias, B.S., Rodrigues, D.A.S., Moura, C.M., Dotto, G.L., Pinto, L.A.A., 2015. Preparation of chitosan with different characteristics and its application for biofilms production. J. Polym. Environ. 23, 470–477. https://doi.org/10.1007/S10924-0150730-Y.
dc.relationNiu, X., Chuang, H., Wang, X., Ho, S.S.H., 2020. Cytotoxicity of PM2.5 vehicular emissions in the Shing Mun tunnel, Hong Kong. Environ. Pollut. 263, 114386.
dc.relationOliveira, M.L.S., Dario, C., Tutikian, B.F., Ehrenbring, H.Z., Almeida, C.C.O., Silva, L.F.O., 2019. Historic building materials from Alhambra: nanoparticles and global climate change effects. J. Clean. Prod. 232, 751–758.
dc.relationOliveira, M.L.S., Tutikian, B.F., Milanes, C., Silva, L.F.O., 2020. Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica. J. Clean. Prod. 248 (119250).
dc.relationOzga, I., Ghedini, N., Bonazza, A., Morselli, L., Sabbioni, C., 2009. The importance of atmospheric particle monitoring in the protection of cultural heritage. In: AIR POLLUTION 2009, Tallinn, Estonia, pp. 259–269. https://doi.org/10.2495/ AIR090241. Tallinn, Estonia.
dc.relationPeres, E.C., Slaviero, J.C., Cunha, A.M., Dotto, G.L., 2018. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. https://doi.org/10.1016/J.JECE.2017.12.062.
dc.relationPinheiro, F.V., 2017. Redesigning historic cities facing rapid tourism growth. Worldw. Hospit. Tourism Themes 9 (3), 274–288.
dc.relationPranjic, A.M., Ranogajec, J., Ŀkrlep, L., Ŀkapin, A.S., Vucetic, S., Rebec, K.M., Turk, J., 2018. Life cycle assessment of novel consolidants and a photocatalytic suspension for the conservation of the immovable cultural heritage. J. Clean. Prod. 181, 293–308.
dc.relationPulido-fernandez, J.I., Cardenas-garcía, P.J., Espinosa-pulido, J.A., 2019. Does environmental sustainability contribute to tourism growth? An analysis at the country level. J. Clean. Prod. 213, 309–319.
dc.relationRamos, C.G., Querol, X., Dalmora, A.C., De Jesus, P.K.C., Schneider, I.A.H., Oliveira, L.F.S., Kautzmann, R.M., 2017. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 142, 2700–2706.
dc.relationRivas, I., Beddows, D.C.S., Amato, F., Querol, X., Kelly, F.J., 2020. Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ. Int. 135, 1–19.
dc.relationRodriguez-Iruretagoiena, A., De Vallejuelo, S.F.O., Gredilla, A., Ramos, C.G., Oliveira, M.L.S., Arana, G., De Diego, A., Madariaga, J.M., Silva, L.F., 2015. Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci. Total Environ. 508, 374–382.
dc.relationRodrigues, D.A.S., Moura, J.M., Dotto, G.L., Pinto, L.A.A., 2018. Preparation, characterization and dye adsorption/reuse of chitosan-vanadate films. J. Polym. Environ. 26, 2917–2924. https://doi.org/10.1007/S10924-017-1171-6.
dc.relationRojas, J.C., Sanchez, N.E., Schneider, I., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: environmental implications. Urban Clim. 27, 412–419.
dc.relationSalvi, S.S., Nordenhall, C., Blomberg, A., Rudell, B., Pourazar, J., Kelly, F.J., Wilson, S., Sandstrom, T., Holgate, S.T., Frew, A.J., 2000. Acute exposure to diesel exhaust increases IL-8 and GRO-α production in healthy human airways. Am. J. Respir. Crit. Care Med. 161, 550–557.
dc.relationSajjadi, S., Mohammadzadeh, A., Hai, N.T., Hosseini-Bandegharaei, A., 2018. Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J. Environ. Manag. 233, 1001–1009. https://doi.org/10.1016/J.JENVMAN.2018.06.077.
dc.relationSouza, P.R., Dotto, G.L., Salau, N.P.G., 2017. Detailed numerical solution of pore volume and surface diffusion model in adsorption systems. Chem. Eng. Res. Des. https:// doi.org/10.1016/J.CHERD.2017.04.021.
dc.relationSchneider, I.L., Teixeira, E.C., Agudelo-castan~eda, D., Silva e Silva, G., Balzaretti, N., Braga, M., Oliveira, L.F., 2016. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160.
dc.relationSilva, L.F., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776. Thue, P.S., dos Reis, G.S., Lima, E.C., Pavan, F.A., 2017. Activated carbon obtained from sapelli wood sawdust by microwave heating for o-cresol adsorption. Res. Chem. Intermed. 43, 1063–1087. https://doi.org/10.1007/S11164-016-2683-8.
dc.relationUmpierres, C.S., Thue, P.S., Lima, E.C., Dotto, G.L., 2018. Microwave-activated carbons from tucumA (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environ. Technol. 39 (9), 1173–1187. https://doi.org/ 10.1080/09593330.2017.1323957.
dc.relationUmpierres, C.S., Prola, L.D.T., Adebayo, M.A., Benvenutti, E., 2017. Mesoporous Nb2O5/ SiO2 material obtained by sol-gel method and applied as adsorbent of crystal violet dye. Environ. Technol. 38 (5), 566–578. https://doi.org/10.1080/ 09593330.2016.1202329.
dc.relationValotto, G., Zannoni, D., Rampazzo, G., Visin, F., Formenton, G., Gasparello, A., 2018. Characterization and preliminary risk assessment of road dust collected in Venice airport (Italy). J. Geochem. Explor. 190, 142–153.
dc.relationVieira, M.L.G., Esquerdo, V.M., Nobre, L.R., Pinto, L.A.A., 2014. Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J. Ind. Eng. Chem. https://doi.org/10.1016/J.JIEC.2013.12.024.
dc.relationWang, M., Kong, W., Marten, R., He, X.C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H.E., Amanatidis, S., Amotim, A., Baalbaki, R., Baccarini, A., Bell, D.M., Bertozzi, B., Br€akling, S., Brilke, S., Murillo, L.C., Bell, D.M., Bertozzi, B., Br€akling, S., Brilke, S., Murillo, L.C., Chiu, R., Chu, B., De Menezes, L.P., Duplissy, J., Finkenzeller, H., Carracedo, L.G., Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampim€aki, M., Lee, C.P., Makhmutov, V., Marie, G., Mathot, S., Mauldin, R.L., Mentler, B., Müller, T., Onnela, A., Partoll, E., Pet€aj€a, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Ro€rup, B., Scholz, W., Shen, J., Simon, M., Sipil€a, M., Steiner, G., Stolzenburg, D., Tham, Y.J., Tome, A., Wagner, A.C., Wang, D.S., Wang, Y., Weber, S.K., Winkler, P.M., Wlasits, Peter J., Wu, Y., Xiao, M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D.R., Kirkby, J., Seinfeld, J.H., El-Haddad, I., Flagan, R.C., Donahue, N.M., 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature 581, 184–189.
dc.relationZanoletti, M., Godard, F., Perrier, M., 2020. Effect of support on the apparent activity of palladium oxide in catalytic methane combustion. Can. J. Chem. Eng. 1, 1–24.
dc.relationZdravkov, B., Cermak, J., Ŀefara, M., Jankŏ, J., 2007. Pore classification in the characterization of porous materials: a perspective. Open Chem. 5 (4), 1158-1158.
dc.relationZhang, Y., Khan, S.A.R., Kumar, A., Golpîra, H., Sharif, A., 2019. Is tourism really affected by logistical operations and environmental degradation? An empirical study from the perspective of Thailand. J. Clean. Prod. 227, 158–166.
dc.relationZhu, G., Chen, T., Hu, Y., Ma, L., Chen, R., Lv, H., Wang, Y., Liang, J., Li, X., Yan, C., Zhu, C., Liu, H., Tie, Z., Jin, Z., Liu, J., 2017. Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 33, 229–237.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceGeoscience Frontiers
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S167498712030164X
dc.subjectAtmospheric contamination
dc.subjectHistoric construction
dc.subjectCarbonaceous particles
dc.subjectSource investigation
dc.subjectVehicular traffic effects
dc.titleAn analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución