dc.creatorAgudelo-Castañeda, Dayana
dc.creatorArellana, Julian
dc.creatorMORGADO GAMERO, WENDY BEATRIZ
dc.creatorDe Paoli, Fabrício
dc.creatorPortz, Luana
dc.date2023-04-11T15:52:26Z
dc.date2025
dc.date2023-04-11T15:52:26Z
dc.date2023
dc.date.accessioned2023-10-03T19:58:14Z
dc.date.available2023-10-03T19:58:14Z
dc.identifierDayana Agudelo-Castañeda, Julián Arellana, Wendy B. Morgado-Gamero, Fabrício De Paoli, Luana Carla Portz, Linking of built environment inequalities with air quality: A case study, Transportation Research Part D: Transport and Environment, Volume 117, 2023, 103668, ISSN 1361-9209, https://doi.org/10.1016/j.trd.2023.103668
dc.identifier1361-9209
dc.identifierhttps://hdl.handle.net/11323/9977
dc.identifier10.1016/j.trd.2023.103668
dc.identifier1879-2340
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173501
dc.descriptionIn developing countries, where few air quality stations and studies exist, measuring the spatial gradient of nitrogen dioxide (NO2) in urban areas is challenging. Our research explores the linking the of built environment with air quality by developing a model that allows relating NO2 with transport, land use, socioeconomics, and built environment characteristics. For the model estimation, we installed and quantified 114 diffusion tubes from Gradko© in Barranquilla, Colombia, a Caribbean city. Our results indicated that the lowest NO2 values occurred in remaining green areas, reduced traffic, and places that favor walking. However, the city design and current conditions of the built environment generate inequalities in exposure to air pollution. Low-income inhabitants are exposed to higher NO2 values than wealthier people. Therefore, planning sustainable and equitable cities should involve reducing NO2 concentrations by designing sound strategies for adequate mobility and developing an urban design that promotes walking.
dc.format17 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier Ltd.
dc.publisherUnited Kingdom
dc.relationTransportation Research, Part D: Transport and Environment
dc.relationAbhijith, K.V., Kumar, P., 2019. Field investigations for evaluating green infrastructure effects on air quality in open-road conditions. Atmos Environ 201, 132–147. https://doi.org/10.1016/j.atmosenv.2018.12.036.
dc.relationAbhijith, K.V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., di Sabatino, S., Pulvirenti, B., 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmos Environ 162, 71–86. https://doi.org/10.1016/j. atmosenv.2017.05.014.
dc.relationAchakulwisut, P., Brauer, M., Hystad, P., Anenberg, S.C., 2019. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO 2 pollution: estimates from global datasets. Lancet Planet Health 3, e166–e178. https://doi.org/10.1016/S2542-5196(19)30046-4.
dc.relationAgudelo-Castaneda, ˜ D., de Paoli, F., Morgado-Gamero, W.B., Mendoza, M., Parody, A., Maturana, A.Y., Teixeira, E.C., 2020. Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city. Science of the Total Environment 720, 137675. https://doi.org/10.1016/j.scitotenv.2020.137675.
dc.relationAgudelo-Castaneda, ˜ D.M., Teixeira, E.C., Rolim, S.B.A., Pereira, F.N., Wiegand, F., 2013. Measurement of particle number and related pollutant concentrations in an urban area in South Brazil. Atmos Environ 70, 254–262. https://doi.org/10.1016/j.atmosenv.2013.01.029.
dc.relationAgudelo-Castaneda, D.M., Teixeira, E.C., 2014. Time-series analysis of surface ozone and nitrogen oxides concentrations in an urban area at Brazil. Atmos Pollut Res 5, 411–420. https://doi.org/10.5094/APR.2014.048.
dc.relationAgudelo-Castaneda, ˜ D.M., Teixeira, E.C., Alves, L., Fernandez-Ni ´ no, ˜ J.A., Rodríguez-Villamizar, L.A., 2019. Monthly-term associations between air pollutants and respiratory morbidity in South Brazil 2013–2016: A multi-city, time-series analysis. Int J Environ Res Public Health 16, 1–13. https://doi.org/10.3390/ ijerph16203787.
dc.relationAkaraci, S., Feng, X., Suesse, T., Jalaludin, B., Astell-Burt, T., 2022. Associations between green space, air pollution and birthweight in Sydney Metropolitan Area, Australia. Urban For Urban Green 76, 127726. https://doi.org/10.1016/j.ufug.2022.127726.
dc.relationAllen, R.W., Amram, O., Wheeler, A.J., Brauer, M., 2011. The transferability of NO and NO2 land use regression models between cities and pollutants. Atmos Environ 45, 369–378. https://doi.org/10.1016/j.atmosenv.2010.10.002.
dc.relationArellana, J., Saltarín, M., Larranaga, ˜ A.M., Alvarez, V., Henao, C.A., 2020b. Urban walkability considering pedestrians’ perceptions of the built environment: a 10- year review and a case study in a medium-sized city in Latin America. Transp Rev 40, 183–203. https://doi.org/10.1080/01441647.2019.1703842.
dc.relationArellana, J., Saltarín, M., Larranaga, ˜ A.M., Gonz´alez, V.I., Henao, C.A., 2020c. Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments. Transp Res Part A Policy Pract 139, 310–334. https://doi.org/10.1016/j.tra.2020.07.010.
dc.relationArellana, J., Alvarez, V., Oviedo, D., Guzman, L.A., 2021a. Walk this way: Pedestrian accessibility and equity in Barranquilla and Soledad. Colombia. Research in Transportation Economics 86, 101024. https://doi.org/10.1016/j.retrec.2020.101024.
dc.relationArellana, J., Oviedo, D., Guzman, L.A., Alvarez, V., 2020a. Urban transport planning and access inequalities: A tale of two Colombian cities. Research in Transportation Business and Management 100554. https://doi.org/10.1016/j.rtbm.2020.100554.
dc.relationArellana, J., Oviedo, D., Guzman, L.A., Alvarez, V., 2021b. Urban transport planning and access inequalities: A tale of two Colombian cities. Research in Transportation Business & Management 40, 100554. https://doi.org/10.1016/j.rtbm.2020.100554.
dc.relationBaldauf, R.W., Heist, D., Isakov, V., Perry, S., Hagler, G.S.W., Kimbrough, S., Shores, R., Black, K., Brixey, L., 2013. Air quality variability near a highway in a complex urban environment. Atmos Environ 64, 169–178. https://doi.org/10.1016/j.atmosenv.2012.09.054.
dc.relationBarranquilla, 2019. Alcaldía de Barranquilla [WWW Document]. URL https://www.barranquilla.gov.co/?option=com_content&amp%3Bview=article&amp% 3Bid=27&amp%3BItemid=118 (accessed 12.10.20).
dc.relationBasagana, ˜ X., Rivera, M., Aguilera, I., Agis, D., Bouso, L., Elosua, R., Foraster, M., de Nazelle, A., Nieuwenhuijsen, M., Vila, J., Künzli, N., 2012. Effect of the number of measurement sites on land use regression models in estimating local air pollution. Atmos Environ 54, 634–642. https://doi.org/10.1016/j. atmosenv.2012.01.064.
dc.relationBordoloi, R., Mote, A., Sarkar, P.P., Mallikarjuna, C., 2013. Quantification of Land Use Diversity in The Context of Mixed Land Use. Procedia Soc Behav Sci 104, 563–572. https://doi.org/10.1016/j.sbspro.2013.11.150.
dc.relationCantillo-García, V., Guzman, L.A., Arellana, J., 2019. Socioeconomic strata as proxy variable for household income in transportation research 86, 258–267.
dc.relationChen, X., Situ, S., Zhang, Q., Wang, X., Sha, C., Zhouc, L., Wu, L., Wu, L., Ye, L., Li, C., 2019. The synergetic control of NO2 and O3 concentrations in a manufacturing city of southern China. Atmos Environ 201, 402–416. https://doi.org/10.1016/j.atmosenv.2018.12.021.
dc.relationCombes, A., Franchineau, G., 2019. Fine particle environmental pollution and cardiovascular diseases. Metabolism 100, 153944. https://doi.org/10.1016/J. METABOL.2019.07.008.
dc.relationCunha-Zeri, G., Ometto, J., 2021. Nitrogen emissions in Latin America: A conceptual framework of drivers, impacts, and policy responses. Environ Dev. https://doi. org/10.1016/j.envdev.2020.100605.
dc.relationCyrys, J., Eeftens, M., Heinrich, J., Ampe, C., Armengaud, A., Beelen, R., Bellander, T., Beregszaszi, T., Birk, M., Cesaroni, G., Cirach, M., de Hoogh, K., de Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Dimakopoulou, K., Eriksen, K., Galassi, C., Grauleviˇciene, R., Grivas, G., Gruzieva, O., Gustafsson, A.H., Hoffmann, B., Iakovides, M., Ineichen, A., Kramer, ¨ U., Lanki, T., Lozano, P., Madsen, C., Meliefste, K., Modig, L., Molter, ¨ A., Mosler, G., Nieuwenhuijsen, M., Nonnemacher, M., Oldenwening, M., Peters, A., Pontet, S., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Sugiri, D., Stephanou, E.G., Taimisto, P., Tsai, M.Y., Vaskovi, ¨ E., ´ Villani, S., Wang, M., Brunekreef, B., Hoek, G., 2012. Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos Environ 62, 374–390. https://doi.org/10.1016/j.atmosenv.2012.07.080.
dc.relationDavila, ´ J.D., Oviedo, D., 2018. MASS TRANSIT, SOCIAL INEQUALITIES AND BRT-DRIVEN (IM) MOBILITIES IN BARRANQUILLA, COLOMBIA, in: Hern´andez-García, J., Cardenas-O ´ ’Byrne, S., García-Jerez, A., Beza, B.B. (Eds.), Urban Space, Experiences and Reflections from the Global South. Sello Editorial Javeriano, pp. 173–200. 10.2307/j.ctvhn0bx4.10.
dc.relationDiener, A., Mudu, P., 2021. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Science of the Total Environment 796, 148605. https://doi.org/10.1016/j. scitotenv.2021.148605.
dc.relationDijkema, M.B., Gehring, U., van Strien, R.T., van der Zee, S.C., Fischer, P., Hoek, G., Brunekreef, B., 2011. A comparison of different approaches to estimate smallscale spatial variation in outdoor NO2 concentrations. Environ Health Perspect 119, 670–675. https://doi.org/10.1289/ehp.0901818.
dc.relationDobbs, C., Hern´ andez-Moreno, A., ´ Reyes-Paecke, S., Miranda, M.D., 2018. Exploring temporal dynamics of urban ecosystem services in Latin America: The case of Bogota (Colombia) and Santiago (Chile). Ecol Indic 85, 1068–1080. https://doi.org/10.1016/j.ecolind.2017.11.062.
dc.relationDobrucka, ´ L., 2014. Reframing planning theory in terms of five categories of questions. Planning Theory 15, 145–161. https://doi.org/10.1177/1473095214525392.
dc.relationEN 13528, 2002. Ambient Air Quality - Diffusive Samplers for the Determination of Concentrations of Gases and Vapours - Require- ments and Test Methods. European Standards.
dc.relationEPA, 2022. Nitrogen Dioxide Trends [WWW Document]. URL https://www.epa.gov/air-trends/nitrogen-dioxide-trends. Ewing, R., Cervero, R., 2010. Travel and the Built Environment. Journal of the American Planning Association 76, 265–294. https://doi.org/10.1080/ 01944361003766766.
dc.relationFecht, D., Fischer, P., Fortunato, L., Hoek, G., de Hoogh, K., Marra, M., Kruize, H., Vienneau, D., Beelen, R., Hansell, A., 2015. Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands. Environmental Pollution 198, 201–210. https://doi. org/10.1016/j.envpol.2014.12.014.
dc.relationFelix, E., Gidhagen, L., Alonso, M.F., Nahirny, E.P., Alves, B.L., Segersson, D., Amorim, J.H., 2019. Passive sampling as a feasible tool for mapping and model evaluation of the spatial distribution of nitrogen oxides in the city of Curitiba, Brazil. Air Qual Atmos Health 12, 837–846. https://doi.org/10.1007/s11869-019-00701-z.
dc.relationGallagher, J., Baldauf, R., Fuller, C.H., Kumar, P., Gill, L.W., McNabola, A., 2015. Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmos Environ 120, 61–70. https://doi.org/10.1016/j.atmosenv.2015.08.075.
dc.relationGallego-Cartagena, E., Morillas, H., Morgado-Gamero, W., Fuentes-Gandara, F., Vacca-Jimeno, V., Salcedo, I., Madariaga, J.M., Maguregui, M., 2022. Elemental imaging approach to assess the ability of subaerial biofilms growing on constructions located in tropical climates as potential biomonitors of atmospheric heavy metals pollution. Chemosphere 309 (Part 2), 136743. https://doi.org/10.1016/j.chemosphere.2022.136743.
dc.relationGeddes, J.A., Martin, R.V., Boys, B.L., vanDonkelaar, A., 2016. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ Health Perspect 124, 281–289. https://doi.org/10.1289/ehp.1409567.
dc.relationGeurs, K.T., van Wee, B., 2004. Accessibility evaluation of land-use and transport strategies: review and research directions. J Transp Geogr 12, 127–140. https://doi. org/10.1016/j.jtrangeo.2003.10.005.
dc.relationGhasemian, M., Amini, S., Princevac, M., 2017. The influence of roadside solid and vegetation barriers on near-road air quality. Atmos Environ 170, 108–117. https:// doi.org/10.1016/j.atmosenv.2017.09.028.
dc.relationGlencross, D.A., Ho, T.-R., Camina, ˜ N., Hawrylowicz, C.M., Pfeffer, P.E., 2020. Air pollution and its effects on the immune system. Free Radic Biol Med. https://doi. org/10.1016/J.FREERADBIOMED.2020.01.179.
dc.relationGomez ´ Pelaez, ´ L.M., Santos, J.M., de Almeida Albuquerque, T.T., Reis, N.C., Andreao, ˜ W.L., de Fatima ´ Andrade, M., 2020. Air quality status and trends over large cities in South America. Environ Sci Policy 114, 422–435. https://doi.org/10.1016/j.envsci.2020.09.009.
dc.relationGoodman, A., Wilkinson, P., Stafford, M., Tonne, C., 2011. Characterising socio-economic inequalities in exposure to air pollution: A comparison of socio-economic markers and scales of measurement. Health Place 17, 767–774. https://doi.org/10.1016/j.healthplace.2011.02.002.
dc.relationGradko, 2012. Technical Data Sheet: Nitrogen Dioxide.
dc.relationGrundstrom, ¨ M., Pleijel, H., 2014. Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic route. Environmental Pollution 189, 73–76. https://doi.org/10.1016/j.envpol.2014.02.026.
dc.relationGruzieva, O., Xu, C.J., Breton, C.V., Annesi-Maesano, I., Anto, ´ J.M., Auffray, C., Ballereau, S., Bellander, T., Bousquet, J., Bustamante, M., Charles, M.A., de Kluizenaar, Y., den Dekker, H.T., Duijts, L., Felix, J.F., Gehring, U., Guxens, M., Jaddoe, V.V.W., Jankipersadsing, S.A., Merid, S.K., Kere, J., Kumar, A., Lemonnier, N., Lepeule, J., Nystad, W., Page, C.M., Panasevich, S., Postma, D., Slama, R., Sunyer, J., Soderh ¨ all, ¨ C., Yao, J., London, S.J., Pershagen, G., Koppelman, G.H., Mel´en, E., 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125, 104–110. https://doi.org/10.1289/EHP36.
dc.relationGuzman, L.A., Oviedo, D., Rivera, C., 2017. Assessing equity in transport accessibility to work and study: The Bogot´ a region. J Transp Geogr 58, 236–246. https://doi. org/10.1016/j.jtrangeo.2016.12.016.
dc.relationHassanpour Matikolaei, S.A.H., Jamshidi, H., Samimi, A., 2019. Characterizing the effect of traffic density on ambient CO, NO2, and PM2.5 in Tehran, Iran: an hourly land-use regression model. Transportation Letters 11, 436–446. https://doi.org/10.1080/19427867.2017.1385201.
dc.relationHatzopoulou, M., Valois, M.F., Levy, I., Mihele, C., Lu, G., Bagg, S., Minet, L., Brook, J., 2017. Robustness of Land-Use Regression Models Developed from Mobile Air Pollutant Measurements. Environ Sci Technol 51, 3938–3947. https://doi.org/10.1021/acs.est.7b00366.
dc.relationHei, 2020. State of Global Air 2020. Special Report, Health Effects Instiute.
dc.relationHekmatpour, P., Leslie, C.M., 2022. Ecologically unequal exchange and disparate death rates attributable to air pollution: A comparative study of 169 countries from 1991 to 2017. Environ Res 212. https://doi.org/10.1016/j.envres.2022.113161.
dc.relationHewitt, C.N., Ashworth, K., MacKenzie, A.R., 2020. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 49, 62–73. https://doi.org/10.1007/ s13280-019-01164-3.
dc.relationHoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D., 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42, 7561–7578. https://doi.org/10.1016/j.atmosenv.2008.05.057.
dc.relationIDEAM, 2020. Atlas climatologico ´ de Colombia [WWW Document]. URL http://atlas.ideam.gov.co/visorAtlasClimatologico.html.
dc.relationJenkin, M.E., Clemitshaw, K.C., 2000. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos Environ 34, 2499–2527. https://doi.org/10.1016/S1352-2310(99)00478-1.
dc.relationJorgenson, A.K., Thombs, R.P., Clark, B., Givens, J.E., Hill, T.D., Huang, X., Kelly, O.M., Fitzgerald, J.B., 2021. Inequality amplifies the negative association between life expectancy and air pollution: A cross-national longitudinal study. Science of the Total Environment 758. https://doi.org/10.1016/j.scitotenv.2020.143705.
dc.relationKnibbs, L.D., Barnett, A.G., 2015. Assessing environmental inequalities in ambient air pollution across urban Australia. Spat Spatiotemporal Epidemiol 13, 1–6. https://doi.org/10.1016/j.sste.2015.03.001.
dc.relationKumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T.S., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K.V., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A.C., de Lusignan, S., Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environ Int 133, 105181. https://doi.org/10.1016/j.envint.2019.105181.
dc.relationLandim, A.A., Teixeira, E.C., Agudelo-Castaneda, ˜ D., Schneider, I., Silva, L.F.O., Wiegand, F., Kumar, P., 2018. Spatio-temporal variations of sulfur dioxide concentrations in industrial and urban area via a new statistical approach. Air Qual Atmos Health 11, 801–813.
dc.relationLanzafame, R., Monforte, P., Scandura Pier, F., 2016. Comparative Analyses of Urban Air Quality Monitoring Systems: Passive Sampling and Continuous Monitoring Stations. Energy Procedia 101, 321–328. https://doi.org/10.1016/j.egypro.2016.11.041.
dc.relationLarranaga, A.M., Arellana, J., Rizzi, L.I., Strambi, O., Cybis, H.B.B., 2019. Using best–worst scaling to identify barriers to walkability: a study of Porto Alegre, Brazil. Transportation (Amst) 46, 2347–2379. https://doi.org/10.1007/s11116-018-9944-x.
dc.relationLloyd, M., Carter, E., Diaz, F.G., Magara-Gomez, K.T., Hong, K.Y., Baumgartner, J., Herrera, G.V.M., Weichenthal, S., 2021. Predicting Within-City Spatial Variations in Outdoor Ultrafine Particle and Black Carbon Concentrations in Bucaramanga, Colombia: A Hybrid Approach Using Open-Source Geographic Data and Digital Images. Environ Sci Technol 55, 12483–12492. https://doi.org/10.1021/acs.est.1c01412.
dc.relationLuminati, O., de Antas, L., de Campos, B., Flückiger, B., Brentani, A., Ro¨osli, ¨ M., Fink, G., de Hoogh, K., 2021. Land use regression modelling of NO2 in S˜ ao Paulo, Brazil. Environmental Pollution 289. https://doi.org/10.1016/j.envpol.2021.117832.
dc.relationMoodley, K.G., Singh, S., Govender, S., 2011. Passive monitoring of nitrogen dioxide in urban air: A case study of Durban metropolis, South Africa. J Environ Manage 92, 2145–2150. https://doi.org/10.1016/J.JENVMAN.2011.03.040.
dc.relationMoreno, E., Schwarz, L., Host, S., Chanel, O., Benmarhnia, T., 2022. The environmental justice implications of the Paris low emission zone: a health and economic impact assessment. Air Qual Atmos Health. https://doi.org/10.1007/s11869-022-01243-7.
dc.relationMorgado-Gamero, W.B., Ramírez, M.C., Parody, A., Viloria, A., Lopez, ´ M.H.A., Kamatkar, S.J., 2018. Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, pp. 244–253. https://doi.org/10.1007/978-3-319-93803-5_23.
dc.relationMorgado-Gamero, W.B., Parody, A., Medina, J., Rodriguez-Villamizar, L.A., Agudelo-Castaneda, D., 2022. Multi-antibiotic resistant bacteria in landfill bioaerosols: environmental conditions and biological risk assessment. Environ. Pollut. 290, 118037 https://doi.org/10.1016/j.envpol.2021.118037.
dc.relationMoroni, S., Lorini, G., 2017. Graphic rules in planning: A critical exploration of normative drawings starting from zoning maps and form-based codes. Planning Theory 16, 318–338. https://doi.org/10.1177/1473095216656389.
dc.relationNIPPON-KOEI LAC-TPD-SELFINVER Consortium, 2019. Accessibility evaluation of land-use and transport strategies: review and research directions.
dc.relationOrellano, P., Reynoso, J., Quaranta, N., Bardach, A., Ciapponi, A., 2020. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ Int 142, 105876. https://doi.org/10.1016/j. envint.2020.105876.
dc.relationOviedo, D., Sabogal-Cardona, O., 2022. Arguments for cycling as a mechanism for sustainable modal shifts in Bogota. ´ J Transp Geogr 99, 103291. https://doi.org/ 10.1016/j.jtrangeo.2022.103291.
dc.relationOviedo, D., Sabogal, O., Villamizar Duarte, N., Chong, A.Z.W., 2022. Perceived liveability, transport, and mental health: A story of overlying inequalities. J Transp Health 27, 101513. https://doi.org/10.1016/j.jth.2022.101513.
dc.relationPinault, L., Crouse, D., Jerrett, M., Brauer, M., Tjepkema, M., 2016. Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities. Environ Res 147, 373–382. https://doi.org/10.1016/j.envres.2016.02.033.
dc.relationRichmond-Bryant, J., Snyder, M.G., Owen, R.C., Kimbrough, S., 2018. Factors associated with NO2 and NOX concentration gradients near a highway. Atmos Environ 174, 214–226. https://doi.org/10.1016/j.atmosenv.2017.11.026.
dc.relationRodriguez-Villamizar, L.A., Belalcazar-Ceron, ´ L.C., Fern´andez-Nino, ˜ J.A., Marín-Pineda, D.M., Rojas-Sanchez, ´ O.A., Acuna-Merch ˜ ´an, L.A., Ramírez-García, N., Mangones-Matos, S.C., Vargas-Gonz´alez, J.M., Herrera-Torres, J., Agudelo-Castaneda, ˜ D.M., Pineros ˜ Jim´enez, J.G., Rojas-Roa, N.Y., Herrera-Galindo, V.M., 2021. Air pollution, sociodemographic and health conditions effects on COVID-19 mortality in Colombia: An ecological study. Science of the Total Environment 756, 144020. https://doi.org/10.1016/j.scitotenv.2020.144020.
dc.relationSamoli, E., Stergiopoulou, A., Santana, P., Rodopoulou, S., Mitsakou, C., Dimitroulopoulou, C., Bauwelinck, M., de Hoogh, K., Costa, C., Marí-Dell’Olmo, M., Corman, D., Vardoulakis, S., Katsouyanni, K., 2019. Spatial variability in air pollution exposure in relation to socioeconomic indicators in nine European metropolitan areas: A study on environmental inequality. Environmental Pollution 249, 345–353. https://doi.org/10.1016/j.envpol.2019.03.050.
dc.relationSchraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2019. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 155, 409–416. https://doi.org/10.1016/j.chest.2018.10.042.
dc.relationSeinfeld, J.H., Pandis, S.N., 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed. John Wiley & Sons, Hoboken, New Jersey.
dc.relationShahbazi, H., Hosseini, V., 2020. Impact of mobile source emission inventory adjustment on air pollution photochemical model performance. Urban Clim 32, 100618. https://doi.org/10.1016/j.uclim.2020.100618.
dc.relationShaw, C., Boulic, M., Longley, I., Mitchell, T., Pierse, N., Howden-Chapman, P., 2020. The association between indoor and outdoor NO2 levels: A case study in 50 residences in an urban neighbourhood in New Zealand. Sustain Cities Soc 56, 102093. https://doi.org/10.1016/j.scs.2020.102093.
dc.relationShekarrizfard, M., Faghih-Imani, A., T´etreault, L.-F., Yasmin, S., Reynaud, F., Morency, P., Plante, C., Drouin, L., Smargiassi, A., Eluru, N., Hatzopoulou, M., 2017. Regional assessment of exposure to traffic-related air pollution: Impacts of individual mobility and transit investment scenarios. Sustain Cities Soc 29, 68–76. https://doi.org/10.1016/j.scs.2016.12.002.
dc.relationSon, Y., Osornio-Vargas, A.R., ´ O’Neill, M.S., Hystad, P., Texcalac-Sangrador, J.L., Ohman-Strickland, P., Meng, Q., Schwander, S., 2018. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Science of the Total Environment 639, 40–48. https://doi.org/ 10.1016/j.scitotenv.2018.05.144.
dc.relationSu, J., Wang, L., Gu, Z., Song, M., Cao, Z., 2019. Effects of real trees and their structure on pollutant dispersion and flow field in an idealized street canyon. Atmos Pollut Res 10, 1699–1710. https://doi.org/10.1016/j.apr.2019.07.001.
dc.relationSu, Y., Wu, X., Zhao, Q., Zhou, D., Meng, X., 2022. Interference of Urban Morphological Parameters in the Spatiotemporal Distribution of PM10 and NO2. Taking Dalian as an Example. Atmosphere (Basel) 13. https://doi.org/10.3390/atmos13060907.
dc.relationSun, J., Barnes, A.J., He, D., Wang, M., Wang, J., 2017. Systematic review and meta-analysis of the association between ambient nitrogen dioxide and respiratory disease in China. International Journal of Environmental Research and Public Health 14. https://doi.org/10.3390/ijerph14060646.
dc.relationSun, Y., Lu, Y., Saredy, J., Wang, X., Drummer IV, C., Shao, Y., Saaoud, F., Xu, K., Liu, M., Yang, W.Y., Jiang, X., Wang, H., Yang, X., 2020. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol 101696. https://doi.org/10.1016/j. redox.2020.101696.
dc.relationTanzer, R., Malings, C., Hauryliuk, A., Subramanian, R., Presto, A.A., 2019. Demonstration of a low-cost multi-pollutant network to quantify intra-urban spatial variations in air pollutant source impacts and to evaluate environmental justice. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16142523.
dc.relationTemam, S., Burte, E., Adam, M., Anto, ´ J.M., Basagana, ˜ X., Bousquet, J., Carsin, A.E., Galobardes, B., Keidel, D., Künzli, N., le Moual, N., Sanchez, M., Sunyer, J., Bono, R., Brunekreef, B., Heinrich, J., de Hoogh, K., Jarvis, D., Marcon, A., Modig, L., Nadif, R., Nieuwenhuijsen, M., Pin, I., Siroux, V., Stempfelet, M., Tsai, M.Y., Probst-Hensch, N., Jacquemin, B., 2017. Socioeconomic position and outdoor nitrogen dioxide (NO2) exposure in Western Europe: A multi-city analysis. Environ Int 101, 117–124. https://doi.org/10.1016/j.envint.2016.12.026.
dc.relationTiwari, A., Kumar, P., Baldauf, R., Zhang, K.M., Pilla, F., di Sabatino, S., Brattich, E., Pulvirenti, B., 2019. Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. Science of the Total Environment 672, 410–426. https://doi.org/10.1016/j.scitotenv.2019.03.350.
dc.relationul-Haq, Z., Tariq, S., Ali, M., Mahmood, K., Batool, S.A., Rana, A.D., 2014. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos Pollut Res 5, 709–720. https://doi.org/10.5094/APR.2014.080.
dc.relationvan Zoest, V., Osei, F.B., Hoek, G., Stein, A., 2019. Spatio-temporal regression kriging for modelling urban NO2 concentrations. International Journal of Geographical Information Science 00, 1–15. https://doi.org/10.1080/13658816.2019.1667501.
dc.relationvon Schneidemesser, E., Monks, P.S., Allan, J.D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., Morgan, W.T., Paasonen, P., Righi, M., Sindelarova, K., Sutton, M.A., 2015. Chemistry and the Linkages between Air Quality and Climate Change. Chem Rev 115, 3856–3897. https://doi.org/10.1021/acs.chemrev.5b00089.
dc.relationVoordeckers, D., Meysman, F.J.R., Billen, P., Tytgat, T., van Acker, M., 2021. The impact of street canyon morphology and traffic volume on NO2 values in the street canyons of Antwerp. Build Environ 197, 107825. https://doi.org/10.1016/j.buildenv.2021.107825.
dc.relationWang, C., Sheng, Y., Wang, J., Wang, Y., Wang, P., Huang, L., 2022. Air Pollution and Human Health: Investigating the Moderating Effect of the Built Environment. Remote Sens (Basel) 14, 1–18. https://doi.org/10.3390/rs14153703.
dc.relationWHO, 2022. The Global Health Observatory [WWW Document]. Ambient air pollution data. URL https://www.who.int/data/gho/data/themes/topics/topic-details/ GHO/ambient-air-pollution.
dc.relationXu, M., Sbihi, H., Pan, X., Brauer, M., 2019. Local variation of PM 2.5 and NO2 concentrations within metropolitan Beijing. Atmos Environ 200, 254–263. https://doi. org/10.1016/j.atmosenv.2018.12.014.
dc.relationYu, S., Yin, S., Zhang, R., Wang, L., Su, F., Zhang, Y., Yang, J., 2020. Spatiotemporal characterization and regional contributions of O3 and NO2: An investigation of two years of monitoring data in Henan, China. Journal of Environmental Sciences 90, 29–40. https://doi.org/10.1016/j.jes.2019.10.012.
dc.relationZhu, Y., Zhan, Y., Wang, B., Li, Z., Qin, Y., Zhang, K., 2019. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 220, 155–162. https://doi.org/10.1016/j.chemosphere.2018.12.095.
dc.relation17
dc.relation1
dc.relation117
dc.rights© 2023 The Author(s). Published by Elsevier Ltd.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1361920923000652?via%3Dihub
dc.subjectNO2
dc.subjectBuilt environment
dc.subjectInequalities
dc.subjectWalkability
dc.subjectAir pollution
dc.titleLinking of built environment inequalities with air quality: a case study
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución