dc.creatorTavera, Humberto
dc.creatorRosso Pinto, Mauricio Jose
dc.creatorHernández, Gerardo
dc.creatorPinto, Samuel
dc.creatorCanales, Fausto
dc.date2023-09-18T16:18:57Z
dc.date2023-09-18T16:18:57Z
dc.date2023-03-07
dc.date.accessioned2023-10-03T19:53:39Z
dc.date.available2023-10-03T19:53:39Z
dc.identifierTavera-Quiroz, H.; Rosso-Pinto, M.; Hernández, G.; Pinto, S.; Canales, F.A. Water Quality Analysis of a Tropical Reservoir Based on Temperature and Dissolved Oxygen Modeling by CE-QUAL-W2. Water 2023, 15, 1013.https://doi.org/10.3390/w15061013
dc.identifierhttps://hdl.handle.net/11323/10500
dc.identifier10.3390/w15061013
dc.identifier2073-4441
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9173059
dc.descriptionWater quality impacts on water bodies such as reservoirs are strongly influenced by the hydrodynamics of the system. Although multiple models might be applied, they are limited by the simplification of the variables. In this study, a two-dimensional public domain model, CE-QUAL-W2, was adapted to test whether it would generate an accurate hydrodynamic simulation of the URRÁ Reservoir in Córdoba, Colombia, to understand water quality. The variables to be modeled were temperature and dissolved oxygen due to their importance in ecological terms. Thus, trial and error techniques were used to calibrate and validate the model, varying different parameters such as the wind shelter coefficient (WSC). Although the model accurately predicted the hydrodynamic part by having daily flow information, significant modifications to the eddy diffusivity coefficient were required to simulate acceptable longitudinal currents. This research shows that the CE-QUAL-W2 model fits adequately to tropical lentic systems. However, it is recommended that, for future studies, the modeling be adjusted using hourly data, especially in areas where inflow and boundary conditions are unstable.
dc.format18 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.publisherSwitzerland
dc.relationWater
dc.relation1. Stelzer, C.; Nestmann, F. The importance of reservoirs for water supply and power generation—An overview. In Global Change: Enough Water for All?: Scientific Facts; Verlag Wissenschaftliche Auswertungen: Hamburg, Germany, 2007; Volume 5, pp. 117–121. [CrossRef]
dc.relation2. Branche, E. The multipurpose water uses of hydropower reservoir: The SHARE concept. C. R. Phys. 2017, 18, 469–478. [CrossRef]
dc.relation3. Li, J.; Zhong, P.-A.; Wang, Y.; Yang, M.; Fu, J.; Liu, W.; Xu, B. Risk analysis for the multi-reservoir flood control operation considering model structure and hydrological uncertainties. J. Hydrol. 2022, 612, 128263. [CrossRef]
dc.relation4. Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. Npj Clean Water 2019, 2, 15. [CrossRef]
dc.relation5. United Nations, U.W. Wastewater Management A UN-Water Analytical Brief; WHO: Geneva, Switzerland, 2015.
dc.relation6. Khodabandeh, F.; Dehghani Darmian, M.; Azhdary Moghaddam, M.; Hashemi Monfared, S.A. Reservoir quality management with CE-QUAL-W2/ANN surrogate model and PSO algorithm (case study: Pishin Dam, Iran). Arab. J. Geosci. 2021, 14, 401. [CrossRef]
dc.relation7. Noori, R.; Yeh, H.-D.; Ashrafi, K.; Rezazadeh, N.; Bateni, S.M.; Karbassi, A.; Kachoosangi, F.T.; Moazami, S. A reduced-order based CE-QUAL-W2 model for simulation of nitrate concentration in dam reservoirs. J. Hydrol. 2015, 530, 645–656. [CrossRef]
dc.relation8. Winton, R.S.; López-Casas, S.; Valencia-Rodríguez, D.; Bernal-Forero, C.; Delgado, J.; Wehrli, B.; Jiménez-Segura, L. Patterns and drivers of water quality changes associated with dams in the Tropical Andes. EGUsphere 2022, 403, 1–21. [CrossRef]
dc.relation9. Song, Y.; You, L.; Chen, M.; Li, J.; Zhang, L.; Peng, T. Key hydrodynamic principles for controlling algal blooms using emergency reservoir operation strategies. J. Environ. Manag. 2023, 325, 116470. [CrossRef]
dc.relation10. Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [CrossRef]
dc.relation11. Afshar, A.; Shojaei, N.; Sagharjooghifarahani, M. Multiobjective Calibration of Reservoir Water Quality Modeling Using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour. Manag. 2013, 27, 1931–1947. [CrossRef]
dc.relation12. Chanudet, V.; Fabre, V.; van der Kaaij, T. Application of a three-dimensional hydrodynamic model to the Nam Theun 2 Reservoir (Lao PDR). J. Great Lakes Res. 2012, 38, 260–269. [CrossRef]
dc.relation13. Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.; King, K. Soil and Water Assessment Tool (SWAT) User’s Manual Version 2000; Technical Report for Texas Water Resources Institute: College Station, TX, USA, 2002.
dc.relation14. Ma, L.; He, C.; Bian, H.; Sheng, L. MIKE SHE modeling of ecohydrological processes: Merits, applications, and challenges. Ecol. Eng. 2016, 96, 137–149. [CrossRef]
dc.relation15. Xingpo, L.; Muzi, L.; Yaozhi, C.; Jue, T.; Jinyan, G. A comprehensive framework for HSPF hydrological parameter sensitivity, optimization and uncertainty evaluation based on SVM surrogate model—A case study in Qinglong River watershed, China. Environ. Model. Softw. 2021, 143, 105126. [CrossRef]
dc.relation16. Dehdari, V.; Oliver, D.S.; Deutsch, C.V. Comparison of optimization algorithms for reservoir management with constraints—A case study. J. Pet. Sci. Eng. 2012, 100, 41–49. [CrossRef]
dc.relation17. Diogo, P.A.; Fonseca, M.; Coelho, P.S.; Mateus, N.S.; Almeida, M.C.; Rodrigues, A.C. Reservoir phosphorous sources evaluation and water quality modeling in a transboundary watershed. Desalination 2008, 226, 200–214. [CrossRef]
dc.relation18. Hamilton, D.P.; Hocking, G.C.; Patterson, J.C. Criteria for selection of spatial dimension in the application of one- and twodimensional water quality models. Math. Comput. Simul. 1997, 43, 387–393. [CrossRef]
dc.relation19. Ochoa, S.; Reyna, T.; Reyna, S.; García, M.; Labaque, M.; Manuel Díaz, J. Modelación Hidrodinámica Del Tramo Medio Del Río Ctalamochita, Provincia de Córdoba. Rev. Fac. Cienc. Exactas Fís. Nat. 2016, 3, 95–101.
dc.relation20. Ostfeld, A.; Salomons, S. A hybrid genetic—Instance based learning algorithm for CE-QUAL-W2 calibration. J. Hydrol. 2004, 310, 122–142. [CrossRef]
dc.relation21. Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.2.2. User Manual: Part 1 Introduction, Model Download Package, How to Run the Model; Technical Report for Department of Civil and Environmental Engineering Portland State University: Portland, OR, USA, 2020.
dc.relation22. Bonalumi, M.; Anselmetti, F.S.; Wüest, A.; Schmid, M. Modeling of temperature and turbidity in a natural lake and a reservoir connected by pumped-storage operations. Water Resour. Res. 2012, 48, W08508. [CrossRef]
dc.relation23. Noori, R.; Tian, F.; Ni, G.; Bhattarai, R.; Hooshyaripor, F.; Klöve, B. ThSSim: A novel tool for simulation of reservoir thermal stratification. Sci. Rep. 2019, 9, 18524. [CrossRef]
dc.relation24. Noori, R.; Asadi, N.; Deng, Z. A simple model for simulation of reservoir stratification. J. Hydraul. Res. 2019, 57, 561–572. [CrossRef]
dc.relation25. Tavoosi, N.; Hooshyaripor, F.; Noori, R.; Farokhnia, A.; Maghrebi, M.; Kløve, B.; Haghighi, A.T. Experimental-numerical simulation of soluble formations in reservoirs. Adv. Water Resour. 2022, 160, 104109. [CrossRef]
dc.relation26. Chuo, M.; Ma, J.; Liu, D.; Yang, Z. Effects of the impounding process during the flood season on algal blooms in Xiangxi Bay in the Three Gorges Reservoir, China. Ecol. Model. 2018, 392, 236–249. [CrossRef]
dc.relation27. Kurup, R.G.; Hamilton, D.P.; Phillips, R.L. Comparison of two 2-dimensional, laterally averaged hydrodynamic model applications to the Swan River Estuary. Math. Comput. Simul. 2000, 51, 627–638. [CrossRef]
dc.relation28. Larabi, S.; Schnorbus, M.A.; Zwiers, F. A coupled streamflow and water temperature (VIC-RBM-CE-QUAL-W2) model for the Nechako Reservoir. J. Hydrol. Reg. Stud. 2022, 44, 101237. [CrossRef]
dc.relation29. Shojaei, N.; Wells, S. Automatic Calibration of Water Quality Models for Reservoirs and Lakes. In Proceedings of the World Environmental and Water Resources Congress 2014, Portland, OR, USA, 1–5 June 2014; Volume 2014, pp. 1020–1029. [CrossRef]
dc.relation30. American Society of Civil Engineers Task Committee on Turbulence Models in Hydraulic Computation. Turbulence Modeling of Surface Water Flow and Transport: Part I. J. Hydraul. Eng. 1988, 114, 970–991. [CrossRef]
dc.relation31. Afshar, A.; Feizi, F.; Yousefi Moghadam, A.; Saadatpour, M. Enhanced CE-QUAL-W2 model to predict the fate and transport of volatile organic compounds in water body: Gheshlagh reservoir as case study. Environ. Earth Sci. 2017, 76, 803. [CrossRef]
dc.relation32. Bartholow, J.; Hanna, R.B.; Saito, L.; Lieberman, D.; Horn, M. Simulated Limnological Effects of the Shasta Lake Temperature Control Device. Environ. Manag. 2001, 27, 609–626. [CrossRef]
dc.relation33. Chung, S.; Oh, J. Calibration of CE-QUAL-W2 for a monomictic reservoir in a monsoon climate area. Water Sci. Technol. 2006, 54, 29–37. [CrossRef]
dc.relation34. Deliman, P.N.; Gerald, J.A. Application of the Two-Dimensional Hydrothermal and Water Quality Model, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake Reserv. Manag. 2002, 18, 10–19. [CrossRef]
dc.relation35. Azadi, F.; Ashofteh, P.-S.; Loáiciga, H.A. Reservoir Water-Quality Projections under Climate-Change Conditions. Water Resour. Manag. 2018, 33, 401–421. [CrossRef]
dc.relation36. Xie, Q.; Liu, Z.; Fang, X.; Chen, Y.; Li, C.; MacIntyre, S. Understanding the Temperature Variations and Thermal Structure of a Subtropical Deep River-Run Reservoir before and after Impoundment. Water 2017, 9, 603. [CrossRef]
dc.relation37. Zhao, L.; Cheng, S.; Sun, Y.; Zou, R.; Ma, W.; Zhou, Q.; Liu, Y. Thermal mixing of Lake Erhai (Southwest China) induced by bottom heat transfer: Evidence based on observations and CE-QUAL-W2 model simulations. J. Hydrol. 2021, 603, 126973. [CrossRef]
dc.relation38. Yu, S.J.; Lee, J.Y.; Ha, S.R. Effect of a seasonal diffuse pollution migration on natural organic matter behavior in a stratified dam reservoir. J. Environ. Sci. 2010, 22, 908–914. [CrossRef] [PubMed]
dc.relation39. Torres, E.; Galván, L.; Cánovas Ruiz, C.; Soria-Píriz, S.; Arbat-Bofill, M.; Nardi, A.; Papaspyrou, S.; Ayora, C. Oxycline formation induced by Fe(II) oxidation in a water reservoir affected by acid mine drainage modeled using a 2D hydrodynamic and water quality model—CE-QUAL-W2. Sci. Total. Environ. 2016, 562, 1–12. [CrossRef]
dc.relation40. Parra-Cuadros, M.; Villegas-Jiménez, N.E.; Hernández-Atilano, E.; Aguirre-Ramírez, N.J.; de Vélez-Macías, F.J. Aplicación del modelo CE QUAL-W2: Una aproximación a la estructura térmica en el embalse Miguel Martínez Isaza, Concordia, Antioquia, Colombia. Tecnológicas 2019, 22, 99–113. [CrossRef]
dc.relation41. Clavijo-Bernal, O.F. El agua y la participación como ejes articuladores del territorio. Consideraciones a partir de URRÁ y su incidencia sobre la cuenca del río Sinú. Gestión Ambiente 2021, 24, 51–74. [CrossRef]
dc.relation42. URRÁ S.A. E.S. Reporte técnico de monitoreo ambiental. Printed document. 2021.
dc.relation43. Hernández Camacho, J.; Walschburger, T.; Ortiz Quijano, R.; Hurtado Guerra, A. Origen y Distribución de La Biota Su-ramericana y Colombiana. Acta Zool. Mex. 1992, 55–104.
dc.relation44. Palencia Severiche, G.; Mercado-Fernandez, T.; Combath Caballero, E. Estudio Agroclimático de Córdoba; Technical Report for Facultad de Ciencias Agrícolas; Universidad de Córdoba: Córdoba, Spain, 2006.
dc.relation45. URRÁ S.A. E.S. Incremento del volumen del embalse de URRÁ. Reporte técnico. 2010.
dc.relation46. Vélez Flórez, A.J. Propuesta Metodológica Para La Evaluación y Cuantificación de La Alteración Del Régimen de Caudales de Corrientes Alteradas Antrópicamente, Caso URRÁ I. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2009.
dc.relation47. Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.5, User Manual Part 2, Hydrodynamic and Water Quality Model Theory; Technical Report for Department of Civil and Environmental Engineering, Portland State University: Portland, OR, USA, 2021.
dc.relation48. Kuo, J.-T.; Lung, W.-S.; Yang, C.-P.; Liu, W.-C.; Yang, M.-D.; Tang, T.-S. Eutrophication modelling of reservoirs in Taiwan. Environ. Model. Softw. 2006, 21, 829–844. [CrossRef]
dc.relation49. Yang, Y.; Deng, Y.; Tuo, Y.; Li, J.; He, T.; Chen, M. Study of the thermal regime of a reservoir on the Qinghai-Tibetan Plateau, China. PLoS ONE 2020, 15, e0243198. [CrossRef]
dc.relation50. Debele, B.; Srinivasan, R.; Parlange, J.-Y. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environ. Model. Assess. 2006, 13, 135–153. [CrossRef]
dc.relation51. Dolz, J.; Armengol, J.; Roura, M.; De Pourcq, K.; Arbat, M.; López, P. Estudio de La Dinámica Sedimentaria y Batimetría de Precisión Del Embalse de Ribarroja. 2009.
dc.relation18
dc.relation1
dc.relation6
dc.relation15
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2073-4441/15/6/1013
dc.subjectWater quality
dc.subjectHydrodynamics
dc.subjectCalibration
dc.subjectURRÁ dam
dc.titleWater quality analysis of a tropical reservoir based on temperature and dissolved oxygen modeling by CE-QUAL-W2
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución