dc.creatorOchmański, M.
dc.creatorMašín, D.
dc.creatorDuque, J.
dc.date2023-08-01T19:40:10Z
dc.date2023-08-01T19:40:10Z
dc.date2023
dc.date.accessioned2023-10-03T19:28:27Z
dc.date.available2023-10-03T19:28:27Z
dc.identifierM. Ochmański, D. Mašín, J. Duque, An approach for 2D modelling of laterally loaded piles, Soils and Foundations, Volume 63, Issue 1, 2023, 101263, ISSN 0038-0806, https://doi.org/10.1016/j.sandf.2022.101263
dc.identifier0038-0806
dc.identifierhttps://hdl.handle.net/11323/10355
dc.identifier10.1016/j.sandf.2022.101263
dc.identifier2524-1788
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170277
dc.descriptionDespite a considerable progress in the analysis and design of monopiles, many methods are based on complex mathematical structures with doubtful or hard assumptions to verify. Therefore, there is still a need for simple and yet accurate methods for the analysis of monopiles under drained and undrained lateral cyclic loading conditions. In this work, a simple yet efficient two-dimensional modelling approach for the analysis of monopiles is proposed. To account for out-of-plane frictional forces, counter-forces derived from virtual frictional forces generated at the out-of-plane pile interface are applied along the pile length together with the scaled pile stiffness. The predictive capabilities of the proposed approach were validated by back-calculating two different experimental sets. The first consists of a small-scale field monopile test on a coarse-grained soil subjected to lateral cyclic loading under drained conditions. The second is a centrifuge test involving a fine-grained soil subjected to lateral cyclic loading under practically undrained conditions. Simulation results with the proposed approach suggest an accurate prediction of pile displacements and bending moments under both drained and undrained lateral cyclic conditions. The method is, however, unable to reproduce pore water pressures generated behind the pile in low permeability materials.
dc.format17 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJapanese Geotechnical Society
dc.publisherJapan
dc.relationSoils and Foundations
dc.relationAli, R., Idriss, R., Allaoua, B., Fahim, K., 2016. Comparison between 2d and 3d analysis of a mono-pile under lateral cyclic load. 5e`me Congre`s Maghre´bin en Inge´nierie Ge´otechnique, Marrakesh, Morocco, pp. 1–9.
dc.relationBalakumar, V., Huang, M., Oh, E., Balasubramaniam, A., 2018. A critical and comparative study on 2d and 3d analyses of raft and piled raft foundations. Geotech. Eng. J. SEAGS AGSSEA 49 (1), 150–164.
dc.relationBauer, E., 1996. Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36 (1), 13–26.
dc.relationChen, L., Yang, X., Li, L., Wu, W., Naggar, M., Wang, K., Chen, J., 2020. Numerical analysis of the deformation performance of monopile under wave and current load. Energies 13 (23), 6431.
dc.relationColmenar, A., Perera, J., Borge, D., Palacio, C., 2016. Offshore wind energy: A review of the current status, challenges and future development in spain. Renew. Sustain. Energy Rev. 64, 1–18.
dc.relationDuque, J., Fuentes, W., Barros, J., 2020. Effect of grain size distribution on the maximum and minimum void ratios of granular soils. Acta Geotechnica Slovenica 17 (2), 26–33.
dc.relationDuque, J., Masˇ´ın, D., Fuentes, W., 2020. Improvement to the intergranular strain model for larger numbers of repetitive cycles. Acta Geotech. 15, 3593–3604.
dc.relationDuque, J., Ochmanski, M., Masˇ´ın, D., Hong, Y., Wang, L., 2021. On the behavior of monopiles subjected to multiple episodes of cyclic loading and reconsolidation in cohesive soils. Comput. Geotech. 134, 104049.
dc.relationDuque, J., Roha´c, J., Masˇ´ın, D., Najser, J., 2022. Experimental investigation on malaysian kaolin under monotonic and cyclic loading: inspection of undrained miner’s rule and drained cyclic preloading. Acta Geotech. https://doi.org/10.1007/s11440-022-01643-0.
dc.relationEsteban, M., Diez, J., Lo´pez, M., Negro, V., 2009. Integral management applied to offshore wind farms. J. Coastal Res. 56, 1204–1208.
dc.relationFuentes, W., Masˇ´ın, D., Duque, J., 2021. Constitutive model for monotonic and cyclic loading on anisotropic clays. Ge´otechnique 71 (8), 657–673.
dc.relationGil, M., 2020. An alternative p-y model for the simulation of large diameter offshore monopiles for wind turbines founded on granular soils under monotonic and cyclic loading. University del Norte, Master Thesis.
dc.relationGudehus, G., Amorosi, A., Gens, A., Herle, I., Kolymbas, D., Masˇ´ın, D., Wood, D.M., Niemunis, A., Nova, R., Pastor, M., Tamagnini, C., Viggiani, G., 2008. The soilmodels.info project. Int. J. Numer. Anal. Meth. Geomech. 32 (12), 1571–1572.
dc.relationGupta, B., Basu, D., 2020. Offshore wind turbine monopile foundations: Design perspectives. Ocean Eng. 213, 107514.
dc.relationHerle, I., Gudehus, G., 1999. Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive-frictional Mater. 4 (5), 461–486.
dc.relationHong, Y., Soomro, M., Ng, C., Wang, L., Yan, J., Li, B., 2015. Tunnelling under pile groups and rafts: Numerical parametric study on tension effects. Comput. Geotech. 68, 54–65.
dc.relationHoulsby, G., 2016. Interactions in offshore foundation design. Ge´otechnique 66 (10), 791–825.
dc.relationHsien, L., 2003. Finite element study of 2D equivalence to 3D analysis of a discrete soil nail problem with applications to serviceability design. National University of Singapore, PhD thesis.
dc.relationIgoe, D., & and, K.G. (2019), ‘Characterization of the blessington sand geotechnical test site’, AIMS Geosciences 5(2), 145–162.
dc.relationJenck, O., Obaei, A., Emeriault, F., Dano, C., 2021. Effect of horizontal multidirectional cyclic loading on piles in sand: A numerical analysis. J. Marine Sci. Eng. 9 (2), 1–22.
dc.relationKadlı´cek, T., 2019. Parameters identification of advanced constitutive models of soils. Czech Technical University in Prague, PhD thesis.
dc.relationKirkwood, P. Haigh, S., 2014, Centrifuge testing of monopiles subject to cyclic lateral loading. In: Proceedings of the International Conference on Physical Modelling in Geotechnics’, Taylor and Francis, London, UK, pp. 827–831.
dc.relationKwaak, B., 2015. ‘Modelling of dynamic pile behaviour during an earthquake using plaxis 2d. Delft University of Technology, Embedded beam (row)’, Master Thesis.
dc.relationLai, Y., Wang, L., Hong, Y., He, B., 2020. Centrifuge modeling of the cyclic lateral behavior of large-diameter monopiles in soft clay: Effects of episodic cycling and reconsolidation. Ocean Eng. 200, 107048.
dc.relationLi, W., Gavin, K., Igoe, D., 2015. Field tests to investigate the cyclic response of monopiles in sand. Proc. ICE - Geotech. Eng. 168 (5), 407– 421.
dc.relationLi, W., Zhu, B., Yang, M., 2017. Static response of monopile to lateral load in overconsolidated dense sand. J. Geotech. Geoenviron. Eng. 143 (7), 04017026.
dc.relationLittleton, I., 1976. An experimental study of the adhesion between clay and steel. J. Terrramech. 13 (3), 141–152.
dc.relationMalekjafarian, A., Jalilvand, S., Doherty, P., Igoe, D., 2021. Foundation damping for monopile supported offshore wind turbines: A review. Marine Struct. 77, 102937.
dc.relationMasˇ´ın, D., 2013. Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotech. 8 (5), 481–496.
dc.relationMasˇ´ın, D., 2014. Clay hypoplasticity model including stiffness anisotropy. Ge´otechnique 64 (3), 232–238.
dc.relationNegro, V., Lo´pez, J., Dolores, M., Alberdi, P., Imaz, M., Serraclara, M., 2017. Monopiles in offshore wind: Preliminary estimate of main dimensions. Ocean Eng. 133, 253–261.
dc.relationNiemunis, A., Herle, I., 1997. Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-frictional Mater. 2 (4), 279– 299.
dc.relationOchmanski, M., Masˇ´ın, D., Duque, J., Hong, Y., Wang, L., 2021. Performance of tripod foundations for offshore wind turbines: a numerical study. Ge´otech. Lett. 11 (3), 230–238.
dc.relationOng, D., 2008. Benchmarking of fem technique involving deep excavation, pilesoil interaction and embankment construction. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, pp. 154–162.
dc.relationPage, A., Grimstad, G., Eiksund, G., Jostad, H., 2019. A macro-element model for multidirectional cyclic lateral loading of monopiles in clay. Comput. Geotech. 106, 314–326.
dc.relationStaubach, P., Wichtmann, T., 2020. Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model. Comput. Geotech. 124, 103553. Tochnog, 2020. Tochnog professional user’s manual, http://tochnogprofessional.nl/. Accessed: 08-25-2020.
dc.relationTolooiyan, A., Gavin, K., 2010. Finite element analysis of the cpt for design of bored piles. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, pp. 3–43.
dc.relationWichtmann, T., 2016. Soil behaviour under cyclic loading: Experimental observations, constitutive description and applications, Habilitation, Karlsruhe Institute of Technology (KIT).
dc.relationWolffersdorff, P.-A.V., 1996. A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-frictional Mater. 1 (3), 251–271.
dc.relation1
dc.relation63
dc.rights© 2023 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0038080622001718
dc.subjectNumerical modelling
dc.subjectPile equivalent stiffness
dc.subjectLateral cyclic loading
dc.subjectSoil-structure interaction
dc.titleAn approach for 2D modelling of laterally loaded piles
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución