Exposición crónica a acroleína en ratas wistar: los efectos de los extractos de guaraná

dc.creatorda Silva Bittencourt, Leonardo
dc.creatorSchnorr, Carlos Eduardo
dc.creatorCopetti Santos, Daniela
dc.creatorRostirolla, Diana Carolina
dc.creatorMoresco, Karla
dc.creatorOzório, Pedro
dc.creatorRodrigues Mingori, Moara
dc.creatorHeinfarth, Luana
dc.creatorGelain, Daniel
dc.creatorMoreira, José Cláudio Fonseca
dc.date2020-11-04T14:47:23Z
dc.date2020-11-04T14:47:23Z
dc.date2019-12-04
dc.date.accessioned2023-10-03T19:15:13Z
dc.date.available2023-10-03T19:15:13Z
dc.identifier17564646
dc.identifierhttps://hdl.handle.net/11323/7200
dc.identifierhttps://doi.org/10.1016/j.jff.2019.103733
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169272
dc.descriptionPrevious studies have reported that acrolein, may exert harmful effects on the brain. However, information regarding the neuroprotective properties of guarana against acrolein is not available. Due to the lack of research, we initiated the current study to investigate the effects of guarana extracts on acrolein-induced toxicity in the liver and the central nervous system of Wistar Rats. Twelve groups of 60 days old Wistar rats treated with guarana extracts (150, 250, and 350 mg/kg/day) for 8 weeks, were challenged with acrolein (2.5 mg/kg/day). Several parameters associated with oxidative damage to the brain and hepatic function, as well as behavior were evaluated. All tested concentrations of guarana extracts exerted protective effects against acrolein induced damage. No hepatic and oxidative damages or behavioral changes were observed in guarana control groups. To the best of our knowledge, this is the first study of its kind and therefore a milestone in this field.
dc.descriptionEstudios anteriores han informado que la acroleína puede ejercer efectos nocivos en el cerebro. Sin embargo, no se dispone de información sobre las propiedades neuroprotectoras del guaraná contra la acroleína. Debido a la falta de investigación, iniciamos el estudio actual para investigar los efectos de los extractos de guaraná sobre la toxicidad inducida por acroleína en el hígado y el sistema nervioso central de las ratas Wistar. Doce grupos de ratas Wistar de 60 días de edad tratadas con extractos de guaraná (150, 250 y 350 mg / kg / día) durante 8 semanas, fueron desafiados con acroleína (2.5 mg / kg / día). Se evaluaron varios parámetros asociados con el daño oxidativo del cerebro y la función hepática, así como el comportamiento. Todas las concentraciones probadas de extractos de guaraná ejercieron efectos protectores contra el daño inducido por acroleína. No se observaron daños hepáticos y oxidativos o cambios de comportamiento en los grupos de control de guaraná. Hasta donde sabemos, este es el primer estudio de este tipo y, por lo tanto, un hito en este campo.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAkbar, M., Essa, M. M., Daradkeh, G., Abdelmegeed, M. A., Choi, Y., Mahmood, L., & Song, B. J. (2016). Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Research, 1637, 34–55. https://doi.org/ 10.1016/j.brainres.2016.02.016.
dc.relationAhmed, S. M., Abdelrahman, S. A., & Salama, A. E. (2017). Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats. Ultrastructural Pathology, 41, 168–185. https://doi.org/10.1080/01913123.2017. 1281367.
dc.relationAlves, A. O., Weis, G. C. C., Unfer, T. C., Assmann, C. E., Barbisan, F., Azzolin, V. F., ... Boligon, A. (2019). Caffeinated beverages contribute to a more efficient inflammatory response: Evidence from human and earthworm immune cells. Food and Chemical Toxicology, 134. https://doi.org/10.1016/j.fct.2019.110809.
dc.relationAlgarve, T. D., Assmann, C. E., Cadoná, F. C., Machado, A. K., Manica-Cattani, M. F., SatoMiyata, Y., ... da Cruz, I. B. M. (2019). Guarana improves behavior and inflammatory alterations triggered by methylmercury exposure: An in vivo fruit fly and in vitro neural cells study. Environmental science and Pollution Research International, 26(15), 15069–15083. https://doi.org/10.1007/s11356-019-04881-0.
dc.relationAlzheimer’s Association Alzheimer’s Disease Facts and Figures 2015. Alzheimer’s Association Publication (2015). http://www.alz.org/facts/downloads/facts_figures_ 2015.pdf/ Accessed May 20 2016.
dc.relationAnsari, M. A., Joshi, G., Huang, Q., Opii, W. O., Abdul, H. M., Sultana, R., & Butterfield, D. A. (2006). In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radical Biology and Medicine, 41, 1694–1703.
dc.relationAnsari, M. A., Keller, J. N., & Scheff, S. W. (2008). Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity. Free Radical Biology and Medicine, 45, 1510–1519. https://doi.org/10.1016/j. freeradbiomed.2008.08.025.
dc.relationBasile, A., Ferrara, L., Pezzo, M. D., Mele, G., Sorbo, S., Bassi, P., & Montesano, D. (2005). Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. Journal of Ethnopharmacology, 102, 32–36.
dc.relationBeretta, G., Furlanetto, S., Regazzoni, L., Zarrella, M., & Facino, R. M. (2008). Quenching of alpha-beta unsaturated aldehydes by green tea polyphenols: HPLC-ESI-MS/MS studies. Journal of Pharmaceutical and Biomedical Analysis, 48, 606–611. https://doi. org/10.1016/j.jpba.2008.05.036.
dc.relationBittencourt, L. S., Machado, D. C., Machado, M. M., Dos Santos, G. F., Algarve, T. D., Marinowic, D. R., ... Cruz, I. B. (2013). The protective effects of guarana extract (Paullinia cupana) on fibroblast NIH-3 T3 cells exposed to sodium nitroprusside. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 53, 119–125. https://doi.org/10.1016/j.fct.2012.11. 041.
dc.relationBittencourt, L. S., Zeidán-Chuliá, F., Yatsu, F. K., Schnorr, C. E., Moresco, K. S., Kolling, E. A., ... Moreira, J. C. (2014). Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acroleininduced cytotoxicity on human neuronal-like cells. Phytotherapy Research: PTR, 28, 1615–1624. https://doi.org/10.1002/ptr.5173.
dc.relationBuccafusco, J. J. (2009). Methods of behavior analysis in neuroscience (2nd ed). Boca Raton: CRC Press.
dc.relationBurcham, P. C., Kaminskas, L. M., Tan, D., & Pyke, S. M. (2008). Carbonyl-scavenging drugs & protection against carbonyl stress-associated cell injury. Mini-Reviews in Medicinal Chemistry, 8, 319–330. Chen, W. Y., Wang, M., Zhang, J., Barve, S. S., McClain, C. J., & Joshi-Barve, S. (2017). Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stressmediated epithelial cell death leading to intestinal barrier dysfunction and permeability. American Journal of Pathology, 187(12), 2686–2697.
dc.relationDuchan, E., Patel, N. D., & Feucht, C. (2010). Energy drinks: A review of use and safety for athletes. The Physician and Sports Medicine, 38, 171–179. https://doi.org/10.3810/ psm.2010.06.1796.
dc.relationEwert, A., Granvogl, M., & Schieberle, P. (2014). Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. Journal of Agricultural and Food Chemistry, 20(62), 8524–8529. https://doi.org/10.1021/jf501527u.
dc.relationFaroon, O., Roney, N., Taylor, J., & Ashizawa, A. (2008a). Acrolein health effects. Toxicology and Industria
dc.relationFaroon, O., Roney, N., Taylor, J., & Ashizawa, A. (2008b). Acrolein environmental levels and potential for human exposure. Toxicology and Industrial Health, 24, 543–564. https://doi.org/10.1177/0748233708098124.
dc.relationFukumasu, H., Avanzo, J. L., Heidor, R., Silva, T. C., Atroch, A., Moreno, F. S., & Dagli, M. L. (2006). Protective effects of guarana (Paullinia cupana Mart. var. Sorbilis) against DEN-induced DNA damage on mouse liver. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 44, 862–867.
dc.relationFraga, C. G., Croft, K. D., Kennedye, D. O., & Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food and Function, 10, 514. https://doi.org/10.1039/c8fo01997e.
dc.relationHuang, Y. J., Jin, M. H., Pi, R. B., Zhang, J. J., Ouyang, Y., Chao, X. J., ... Qin, J. (2013). Acrolein induces Alzheimer's disease-like pathologies in vitro and in vivo. Toxicology Letters, 217, 184–191. https://doi.org/10.1016/j.toxlet.2012.12.023.
dc.relationKleber Silveira, A., Moresco, K. S., Mautone Gomes, H., da Silva Morrone, M., Kich Grun, L., Pens Gelain, D., ... Fonseca Moreira, J. C. (2018). Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats. Phytotherapy Research, 32(12), 2466–2474. https://doi.org/10.1002/ptr. 6185.
dc.relationLo, C. Y., Li, S. M., Tan, D., & Pan, M. H. (2006). Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Molecular Nutrition and Food Research, 50, 1118–1128.
dc.relationMaksymchuk, O., Shysh, A., Rosohatska, I., & Chashchyn, M. (2017). Quercetin prevents type 1 diabetic liver damage through inhibition of CYP2E1. Pharmacology Reports, 69, 1386–1392. https://doi.org/10.1016/j.pharep.2017.05.020.
dc.relationMizoi, M., Yoshida, M., Saiki, R., Waragai, M., Uemura, K., Akatsu, H., ... Igarashi, K. (2014). Distinction between mild cognitive impairment and Alzheimer's disease by CSF amyloid β40 and β42, and protein-conjugated acrolein. Clinica Chimica Acta; International Journal of Clinical Chemistry, 430, 150–155. https://doi.org/10.1016/j. cca.2014.01.007.
dc.relationNaoi, M., Maruyama, W., Shamoto-Nagai, M., Yi, H., Akao, Y., & Tanaka, M. (2005). Oxidative stress in mitochondria: Decision to survival and death of neurons in neurodegenerative disorders. Molecular Neurobiology, 31, 81–93.
dc.relationO’Brien, P. J., Siraki, A. G., & Shangari, N. (2005). Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Critical Reviews in Toxicology, 35, 609–662.
dc.relationPadurariu, M., Ciobica, A., Lefter, R., Serban, I. L., Stefanescu, C., & Chirita, R. (2013). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 25, 134–147.
dc.relationPan, X. Q., Kaneko, H., Ushio, H., & Ohshima, T. (2005). Oxidation of all-cis7,10,13,16,19-docosapentaenoic acid ethyl ester. Hydroperoxide distribution and volatile characterization. European Journal of Lipid Science and Technology, 107, 228–238. https://doi.org/10.1002/ejlt.200501135.
dc.relationPan, Y., Long, X., Yi, R., & Zhao, X. (2018). Polyphenols in Liubao tea can prevent CCl₄- induced hepatic damage in mice through its antioxidant capacities. Nutrients, 10, 10–19. https://doi.org/10.3390/nu10091280.
dc.relationPark, Y. S., Misonou, Y., Fujiwara, N., Takahashi, M., Miyamoto, Y., Koh, Y. H., ... Taniguchi, N. (2005). Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 327, 1058–1065.
dc.relationPocernich, C. B., & Butterfield, D. A. (2012). Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochimica et Biophysica Acta, 1822, 625–630. https:// doi.org/10.1016/j.bbadis.2011.10.003.
dc.relationPochernich, C. B., Lange, M. L. B., Sultana, R., & Butterfiled, D. A. (2011). Nutritional approaches to modulate Oxidative Stress in Alzheimer’s Disease. Current Alzheimer Research, 8, 452–469.
dc.relationPortella, R. L., Barcelos, R. P., da Rosa, E. J., Ribeiro, E. E., Cruz, I. B., Suleiman, L., & Soares, F. A. (2013). Guaraná (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: An in vitro and in vivo study. Lipids in Health and Disease, 12, 1–18. https://doi.org/10.1186/1476-511X-12-12.
dc.relationShao, X., Bai, N., He, K., & Ho, C. T. (2008). Apple polyphenols, phloretin and phloridzin: New trapping agents of reactive dicarbonyl species. Chemical Research in Toxicology, 21, 2042–2050. https://doi.org/10.1021/tx800227v.
dc.relationSingh, M., Murthy, V., & Ramassamy, C. (2010). Modulation of hydrogen peroxide and acrolein-induced oxidative stress, mitochondrial dysfunctions and redox regulated pathways by the Bacopa monniera extract: Potential implication in Alzheimer’s disease. Journal of Alzheimer's disease, 21, 229–247. https://doi.org/10.3233/JAD-2010- 091729
dc.relationSmith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochimica et Biophysica Acta, 1768, 1976–1990.
dc.relationStevens, J. F., & Maier, C. S. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition and Food Research, 52, 7–25. https://doi.org/10.1002/mnfr.200700412.
dc.relationSubbiah, M. T., & Yunker, R. (2008). Studies on the nature of anti-platelet aggregatory factors in the seeds of the Amazonian Herb Guarana (Paullinia cupana). International Journal for Vitamin and Nutrition Research, 78, 96–101. https://doi.org/10.1024/ 0300-9831.78.2.96.
dc.relationSultana, R., Perluigi, M., & Butterfield, D. A. (2013). Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radical Biology and Medicine, 62, 157–169. https://doi.org/10.1016/j.freeradbiomed.2012. 09.027.
dc.relationThomsen, M., Clarke, S., & Vitetta, L. (2018). Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis. Integrative Cancer Therapies, 9(6), 899–916. https://doi.org/10.3920/BM2017.0172.
dc.relationUchida, K. (1999). Current status of acrolein as a lipid peroxidation product. Trends in Cardiovascular Medicine, 9, 109–113.
dc.relationU.S. National Institute of Health (2011). Guide for the Care and Use of Laboratory Animals. (8th Ed.) Washington DC: National Academies Press (US).
dc.relationWang, G. W., Guo, Y., Vondriska, T. M., Zhang, J., Zhang, S., Tsai, L. L., ... Prabhu, S. D. (2008). Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCepsilon signaling and cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 1016–1022.
dc.relationYamaguti-Sasaki, E., Ito, L. A., Canteli, V. C., Ushirobira, T. M., Ueda-Nakamura, T., Dias Filho, B. P., ... de Mello, J. C. (2007). Antioxidant capacity and in vitro prevention of dental plaque formation by extracts and condensed tannins of Paullinia cupana. Molecules, 12, 1950–1963.
dc.relationYoshida, M., Higashi, K., Kuni, K., Mizoi, M., Saiki, R., Nakamura, M., ... Igarashi, K. (2015). Distinguishing mild cognitive impairment from Alzheimer's disease with acrolein metabolites and creatinine in urine. Clinica Chimica Acta; International Journal of Clinical Chemistry, 441, 115–121. https://doi.org/10.1016/j.cca.2014.12. 023.
dc.relationZeidán-Chuliá, F., Gelain, D. P., Kolling, E. A., Rybarczyk-Filho, J. L., Ambrosi, P., Terra, S. R., ... Moreira, J. C. (2013). Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxidative Medicine and Cellular Longevity, 2013, 1–27. https://doi.org/10.1155/2013/791795.
dc.relationZhang, X. W., Li, W. F., Li, W. W., & Ren, K. H. (2011). Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharmaceutical Biology, 49, 256–261. https:// doi.org/10.3109/13880209.2010.501803.
dc.relationZhu, Q., Sun, Z., Jiang, Y., Chen, F., & Wang, M. (2011). Acrolein scavengers: Reactivity, mechanism and impact on health. Molecular Nutrition and Food Research, 55, 1375–1390. https://doi.org/10.1002/mnfr.201100149.
dc.relationZong, S., Li, J., Yang, L., Huang, Q., Ye, Z., Hou, G., & Ye, M. (2018). Synergistic antitumor effect of polysaccharide from Lachnum sp. in combination with cyclophosphamide in hepatocellular carcinoma. Urology, 38, 413–416. https://doi.org/10. 1016/j.carbpol.2018.05.006.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Functional Foods
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1756464619306577?via%3Dihub
dc.subject2-Propenal
dc.subjectOxidative stress
dc.subjectGuarana
dc.subjectPolyphenols
dc.subjectCognitive impairment
dc.subjectNeurogenerative diseases
dc.subjectEstrés oxidativo
dc.subjectGuaraná
dc.subjectPolifenoles
dc.subjectDeterioro cognitivo
dc.subjectEnfermedades neurogenerativas
dc.titleChronic acrolein exposure in wistar rats: the effects of guarana extracts
dc.titleExposición crónica a acroleína en ratas wistar: los efectos de los extractos de guaraná
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución