dc.contributorSousa Santos, Vladimir
dc.contributorBerdugo Sarmiento, Kelly Margarita
dc.creatorGiha Yidi, Salim Adolfo
dc.date2023-09-01T16:19:00Z
dc.date2023-09-01T16:19:00Z
dc.date2023
dc.date.accessioned2023-10-03T19:13:41Z
dc.date.available2023-10-03T19:13:41Z
dc.identifierhttps://hdl.handle.net/11323/10440
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169059
dc.descriptionEn esta investigación se diseñó un sistema de compensación de energía reactiva para mejorar el factor de potencia en el Punto de Conexión Común (PCC) de un sistema eléctrico industrial (SEI) con armónicos. Este sistema de compensación se caracteriza por mitigar armónicos y reducir las pérdidas eléctricas con el menor Período de Recuperación de la Inversión (PRI). El SEI objeto de estudio presentó problemas de bajo factor de potencia, variación de tensión y armónicos por la presencia de motores operando a baja carga alimentados con variadores de velocidad. Para el diseño del sistema se propuso una metodología que incluyó la evaluación de cuatro soluciones: compensación concentrada en el PCC y distribuida en los nodos con bancos de condensadores (S1 y S2 respectivamente), así como la compensación concentrada y distribuida con filtros de armónicos (S3 y S4 respectivamente). Como resultado del estudio se pudo evidenciar que, aunque el costo de inversión de la compensación concentrada es menor que la distribuida, con la compensación distribuida se obtiene mayor reducción de pérdidas eléctricas y menor PRI. En el estudio se observó además que, aunque con S2 se obtuvo el menor PRI (0.4 años) no se recomienda en presencia de armónicos porque la vida útil de los bancos de condensadores se reduce significativamente por los efectos de los armónicos de corriente, por esta razón, se propuso como mejor solución a S4 con filtro de armónicos con un PRI de (0,6 años). Estos resultados deben de considerarse en las consultorías dirigidas a la compensación del factor de potencia en SEI con armónicos, pues generalmente se propone la compensación concentrada de banco de condensadores en el PCC por el menor costo de inversión y mayor facilidad de instalación. Sin embargo, no se evalúan las ventajas de la compensación distribuida con filtros de armónicos.
dc.descriptionIn this master's project, a reactive power compensation system was designed to improve the power factor at the Common Connection Point (PCC) of an industrial electrical system (SEI) with harmonics. This compensation system is characterized by mitigating harmonics and reducing electrical losses with the lowest Investment Recovery Period (PRI). The SEI under study presents problems of low power factor, voltage variation and harmonics due to the presence of motors operating at low load powered by variable speed drives. For the system design, a methodology was proposed that included the evaluation of four solutions: concentrated compensation in the PCC and distributed in the nodes with capacitor banks (S1 and S2 respectively), as well as concentrated and distributed compensation with harmonic filters (S3 and S4 respectively). As a result of the study, it was possible to show that, although the investment cost of concentrated compensation is lower than distributed compensation, with distributed compensation a greater reduction in electrical losses and a lower PRI are obtained. In the study, it was also observed that, although the lowest PRI was obtained with S2 (0.4 years), it is not recommended in the presence of harmonics because the useful life of the capacitor banks is significantly reduced by the effects of current harmonics, for this reason. For this reason, S4 with a harmonic filter with a PRI of (0.6 years) was proposed as the best solution. These results must be considered in the consultancies directed to the compensation of the power factor in SEI with harmonics, since the concentrated compensation of the capacitor bank in the PCC is generally proposed due to the lower investment cost and greater ease of installation. However, the advantages of distributed compensation with harmonic filters are not evaluated.
dc.descriptionMagíster en Eficiencia Energética y Energía Renovable
dc.descriptionMaestría
dc.format92 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherEnergía
dc.publisherBarranquilla, Colombia
dc.publisherMaestría en Eficiencia Energética y Energía Renovable
dc.relationAbdollahi, R. (2015). Harmonic mitigation using 36-Pulse AC-DC converter for direct torque controlled induction motor drives. Journal of Applied Research and Technology, 13(1), 135–144. https://doi.org/10.1016/S1665-6423(15)30012-2
dc.relationAguado, J.-B. R. (1995). Efectos causados por los armónicos en bancos de condensadores.
dc.relationAlfieri, L., Carpinelli, G., & Bracale, A. (2015). New ESPRIT-based method for an efficient assessment of waveform distortions in power systems. Electric Power Systems Research, 122, 130–139. https://doi.org/10.1016/j.epsr.2015.01.011
dc.relationAl‐Muhanna, A. A., & Al‐Muhaini, M. (2019). Reliability impact for optimal placement of power factor correction capacitors considering transient switching events. The Journal of Engineering, 2019(11), 8185–8192. https://doi.org/10.1049/joe.2018.5462
dc.relationAmerica, Y. E. (n.d.). Minimizing Total Harmonic Distortion Values. Pulse, 10–13.
dc.relationAskarzadeh, A. (2016). Capacitor placement in distribution systems for power loss reduction and voltage improvement: A new methodology. IET Generation, Transmission and Distribution, 10(14). https://doi.org/10.1049/iet-gtd.2016.0419
dc.relationBabu, V., & Manikandan, M. (2017). Total Harmonic Distortion Reduction for Power Quality Improvement: A Review. International Journal of Science and Research (IJSR), 6(7), 1681–1684. https://doi.org/10.21275/ART20175635
dc.relationBlooming, T. M. (2006). Capacitor failure analysis. IEEE Industry Applications Magazine, 12(5). https://doi.org/10.1109/MIA.2006.284554
dc.relationBlooming, T. M., & Carnovale, D. J. (2008). Capacitor application issues. IEEE Transactions on Industry Applications, 44(4). https://doi.org/10.1109/TIA.2008.926301
dc.relationBolognani, S., Carli, R., Cavraro, G., & Zampieri, S. (2013). A distributed control strategy for optimal reactive power flow with power constraints. Proceedings of the IEEE Conference on Decision and Control, 4644–4649. https://doi.org/10.1109/CDC.2013.6760616
dc.relationBoonseng, C., & Gitnumlapcharoen, P. (2022). Effect of Low Harmonic Current Under Large Transformers on Harmonic Resonance Assessment in Industrial Systems. 2022 IEEE International Conference on Power and Energy (PECon), 181–185. https://doi.org/10.1109/PECon54459.2022.9988880
dc.relationBoudrias, J. G. (2004). Power factor correction and energy saving with proper transformer, phase shifting techniques and harmonic mitigation. 2004 Large Engineering Systems Conference on Power Engineering - Conference Proceedings; Theme: Energy for the Day After Tomorrow, 98–101.
dc.relationBoylestad Robert. (2004). Introducción al análisis de circuitos decima edición.
dc.relationBucci, G., Ciancetta, F., Fioravanti, A., Fiorucci, E., & Prudenzi, A. (2020). Application of SFRA for diagnostics on medical isolation transformers. International Journal of Electrical Power and Energy Systems, 117(October 2019), 105602. https://doi.org/10.1016/j.ijepes.2019.105602
dc.relationCarlos, E., Carvajal, E., & Director, J. (2007). Análisis de resonancia armónica en sistemas eléctricos.
dc.relationCarlos, I., & Frutos, L. (2016). Compensación Reactiva en Sistemas Eléctricos Industriales con Presencia de Armónicos.
dc.relationCharles Alexander, M. S. (2004). Fundamentals of Electric Circuits. In McGraw-Hill.
dc.relationClavijo, F. (2015). Análisis de factibilidad para la compensación de reactivo en función del mínimo de pérdidas en redes de distribución. 100.
dc.relationCollin, A. J., Djokic, S. Z., Cresswell, C. E., Blanco, A. M., & Meyer, J. (2014). Cancellation of harmonics between groups of modern compact fluorescent lamps. 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, 1190–1194. https://doi.org/10.1109/SPEEDAM.2014.6872006
dc.relationComisión de regulación de energía y gas. (2018). Resolucion Creg 015-2018.
dc.relationCooperacion alemana, I. A. (2014). Factor de potencia y sus implicaciones técnicoeconómicas.
dc.relationCostea, M., & Leonida, T. (2014). The effect of using isolation transformers to supply small nonlinear loads. Proceedings of International Conference on Harmonics and Quality of Power, ICHQP, 337–341. https://doi.org/10.1109/ICHQP.2014.6842781
dc.relationCREG. (2018). Resolución CREG 015-2018. Metodología para la remuneración de la actividad de distribución de energía electrica en el Sistema Interconectado Nacional. In Resolución 015 (p. 239).
dc.relationCziker, A., & Chindris, M. (2014). Power factor correction: A guide for the plant engineer. Technical Data SA02607001E.
dc.relationDash, S. K., Panda, G., Ray, P. K., & Pujari, S. S. (2016). Realization of active power filter based on indirect current control algorithm using Xilinx system generator for harmonic elimination. International Journal of Electrical Power and Energy Systems, 74, 420– 428. https://doi.org/10.1016/j.ijepes.2015.08.010
dc.relationDhomane, G. A., & Suryawanshi, H. M. (2009). Mitigation of harmonics in three-phase ac system using current injection technique for ac-to-dc converter. Electric Power Systems Research, 79(10), 1374–1383. https://doi.org/10.1016/j.epsr.2009.04.009
dc.relationDjokic, S. Z., & Collin, A. J. (2014). Cancellation and attenuation of harmonics in low voltage networks. Proceedings of International Conference on Harmonics and Quality of Power, ICHQP, 137–141. https://doi.org/10.1109/ICHQP.2014.6842856
dc.relationEléctrica, I., & Piriachi, J. G. (2010). Ciencia Unisalle Estudio de compensación reactiva en una instalación típica industrial de media tensión de 6 , 9 kV.
dc.relationEl-Mahayni, R., Van De Vijver, R., Rashidi, R., & Al-Nujaimi, A. (2017). Corporate wide power factor correction application: Economic and technical assessment. Petroleum and Chemical Industry Conference Europe Conference Proceedings, PCIC EUROPE, 2017-May. https://doi.org/10.23919/PCICEurope.2017.8015059
dc.relationEtemadi, A. H., & Fotuhi-Firuzabad, M. (2008). Distribution system reliability enhancement using optimal capacitor placement. IET Generation, Transmission and Distribution, 2(5). https://doi.org/10.1049/iet-gtd:20070515
dc.relationFarag, H. E. Z., & El-Saadany, E. F. (2015). Optimum Shunt Capacitor Placement in Multimicrogrid Systems with Consideration of Islanded Mode of Operation. IEEE Transactions on Sustainable Energy, 6(4). https://doi.org/10.1109/TSTE.2015.2442832
dc.relationFard, A. K., & Niknam, T. (2014). Optimal stochastic capacitor placement problem from the reliability and cost views using firefly algorithm. IET Science, Measurement and Technology, 8(5). https://doi.org/10.1049/iet-smt.2013.0231
dc.relationFelipe, C. P. V., Teyra, M. D. A., Padrón, C. A. P., & Fernández, C. L. C. (2006). Temas eléctricos industriales.
dc.relationFernandez-Comesana, P., Freijedo, F. D., Doval-Gandoy, J., Lopez, O., Yepes, A. G., & Malvar, J. (2012). Mitigation of voltage sags, imbalances and harmonics in sensitive industrial loads by means of a series power line conditioner. Electric Power Systems Research, 84(1), 20–30. https://doi.org/10.1016/j.epsr.2011.10.002
dc.relationGonzatti, R. B., Ferreira, S. C., Da Silva, C. H., Pereira, R. R., Borges Da Silva, L. E., & Lambert-Torres, G. (2016). Smart Impedance: A New Way to Look at Hybrid Filters. IEEE Transactions on Smart Grid, 7(2), 837–846. https://doi.org/10.1109/TSG.2015.2466613
dc.relationGouda, O. E., Amer, G. M., & Salem, W. A. A. (2011). A Study of K- Factor Power Transformer Characteristics by Modeling Simulation. Engineering, Technology & Applied Science Research, 1(5), 114–120. https://doi.org/10.48084/etasr.59
dc.relationGrainger, J. J., & Stevenson, W. D. (1994). Power system analysis. McGraw Hill.
dc.relationGuillermo Reyes Calderón, & De, T. (1996). Armónica en sistemas de distribución de energía eléctrica.
dc.relationIcontec. (2008). Norma técnica NTC 5001 calidad de la potencia eléctrica. 571.
dc.relationIcontec. (2013). Norma técnica NTC 1340 tensiones y frecuencias nominales en sistemas de energía eléctrica en redes de servicio publico. 571.
dc.relationICONTEC Técnica, N. (2004). Código eléctrico colombiano norma NTC 2050.
dc.relationIEEE Power and Energy Society, Power, I., Society, E., & Técnica, N. (2014). IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE 519 2014. 1992(June).
dc.relationIoana, G., Cazacu, E., Stanculescu, M., & Puscasu, S. (2023). Power Factor Correction and Harmonic Mitigation for a Heavy Industrial Nonlinear Load. 13th International Symposium on Advanced Topics in Electrical Engineering, ATEE 2023, 1–6. https://doi.org/10.1109/ATEE58038.2023.10108358
dc.relationIván, J., & Ortega, S. (2014). Metodología de medición de calidad de energía eléctrica en base a normas nacionales e internacionales para la Universidad de la Costa-CUC Oscar Mauricio Cervantes Roa Proyecto de grado para obtener título de Ingeniero Eléctrico.
dc.relationJain, R., Sharma, S., Sreejeth, M., & Singh, M. (2016). PLC based power factor correction of 3-phase Induction Motor. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1–5. https://doi.org/10.1109/ICPEICES.2016.7853637
dc.relationJin, K., & Ortmeyer, T. H. (2002). Application of static compensators in small AC systems. Electric Power Components and Systems, 30(9). https://doi.org/10.1080/15325000290085244
dc.relationKabir, Y., Mohsin, Y. M., & Khan, M. M. (2017). Automated power factor correction and energy monitoring system. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–5. https://doi.org/10.1109/ICECCT.2017.8117969
dc.relationKalair, A. R., Abas, N., Kalair, A. R., Saleem, Z., & Khan, N. (2017). Review of harmonic analysis, modeling and mitigation techniques. Renewable and Sustainable Energy Reviews, 78, 1152–1187. https://doi.org/10.1016/j.rser.2017.04.121
dc.relationKamat, P. R., & Naik, A. J. (2022). Performance Evaluation of Butterworth, Chebyshev, and Elliptic filter for Harmonic Mitigation using P-Q based SAPF. 2022 International Conference on Smart Generation Computing, Communication and Networking, SMART GENCON 2022, 1, 1–5. https://doi.org/10.1109/SMARTGENCON56628.2022.10083787
dc.relationKaruppanan, P., & Mahapatra, K. K. (2014a). Active harmonic current compensation to enhance power quality. International Journal of Electrical Power & Energy Systems, 62, 144–151. https://doi.org/10.1016/J.IJEPES.2014.04.018
dc.relationKaruppanan, P., & Mahapatra, K. K. (2014b). Active harmonic current compensation to enhance power quality. International Journal of Electrical Power and Energy Systems, 62, 144–151. https://doi.org/10.1016/j.ijepes.2014.04.018
dc.relationKrishnamoorthy, H. S., Enjeti, P. N., & Garg, P. (2015). Simplified medium/high frequency transformer isolation approach for multi-pulse diode rectifier front-end adjustable speed drives. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2015-May(May), 527–534. https://doi.org/10.1109/APEC.2015.7104400
dc.relationLegrand. (2018). Compensación de energía reactiva y monitoreo de la calidad de la potencia. Catalogos Un Mundo de Soluciones, 36. http://www.legrand.cl/sitio/flip/guia_catalogo_tecnico/index.html
dc.relationLi Lin, Junbing Wang, & Wenzhong Gao. (2012). Effect of load power factor on voltage stability of distribution substation. 2012 IEEE Power and Energy Society General Meeting, 1–4. https://doi.org/10.1109/PESGM.2012.6345690
dc.relationLiu, W., Chung, I. Y., Liu, L., Leng, S., & Cartes, D. A. (2011). Real-time particle swarm optimization based current harmonic cancellation. Engineering Applications of Artificial Intelligence, 24(1), 132–141. https://doi.org/10.1016/j.engappai.2010.08.004
dc.relationLlumiquinga Loya, F. S. (2012). Diseño De Un Banco De Potencia De La Empresa Banchisfood S.a. Universidad Politécnica Salesiana Sede Quito, 170. https://dspace.ups.edu.ec/bitstream/123456789/1888/12/UPS - KT00020.pdf
dc.relationMa, H., Zheng, C., Yu, W., & Lai, J.-S. J. (2015). A single-stage integrated bridgeless AC/DC converter for electrolytic capacitor-less LED lighting applications. International Journal of Circuit Theory and Applications, 43(6), 742–755. https://doi.org/10.1002/cta.1970
dc.relationMatsumoto, I., & Nomura, S. (2013). Power factor correction of large current line commutated converters using variable series capacitors. 2013 15th European Conference on Power Electronics and Applications, EPE 2013. https://doi.org/10.1109/EPE.2013.6634667
dc.relationMauricio Bedon. (2007). Estudio de nivel de voltaje, peturbaciones y factor de potencia.
dc.relationMendis, S. R., Bishop, M. T., Blooming, T. M., & Moore, R. T. (1995). Improving system operations with the installation of capacitor filter banks in a paper facility with multiple generating units. Conference Record of 1995 Annual Pulp and Paper Industry Technical Conference, 125–130. https://doi.org/10.1109/PAPCON.1995.404842
dc.relationPeña-Alzola, R., Bianchi, M. A., & Ordonez, M. (2016). Control Design of a PFC with Harmonic Mitigation Function for Small Hybrid AC/DC Buildings. IEEE Transactions on Power Electronics, 31(9), 6607–6620. https://doi.org/10.1109/TPEL.2015.2499163
dc.relationPercy Viego, F., De armas Teyra, M., Perez abril, A., Padrón Padrón, A., & Casas Fernandez, L. (2006). Temas especiales para sistemas electricos industriales. 133.
dc.relationPerez Abril Ignacio. (2012). Cálculo de parámetros de filtros pasivos de armónicos.
dc.relationPires, I. A., Murta, M., & Filho, B. J. C. (2014). Active series reactor for electric arc furnace based on electronic power converter. 2014 IEEE Industry Application Society Annual Meeting, IAS 2014, 1–8. https://doi.org/10.1109/IAS.2014.6978447
dc.relationPrabhakar, C., & Bhattar, C. L. (2015). Performance and analysis of PV system at utility level with harmonics mitigation using passive LCL filter. Proceedings of 2015 IEEE 9th International Conference on Intelligent Systems and Control, ISCO 2015, 1. https://doi.org/10.1109/ISCO.2015.7282287
dc.relationRabin Raut and M. N. S. Swamy. (2005). Modern Analog Filter Analysis and Design. Wiley.
dc.relationRahmani-Andebili, M. (2015). Reliability and economic-driven switchable capacitor placement in distribution network. IET Generation, Transmission and Distribution, 9(13). https://doi.org/10.1049/iet-gtd.2015.0359
dc.relationRamos-Carranza, H. A., Medina-Ríos, A., Segundo, J., & Madrigal, M. (2016). Suppression of parallel resonance and mitigation of harmonic distortion through shunt active power compensation. International Journal of Electrical Power and Energy Systems, 75, 152–161. https://doi.org/10.1016/j.ijepes.2015.08.008
dc.relationRiaz, M. T., Afzal, M. M., Aaqib, S. M., & Ali, H. (2021). Analysis and Evaluating the Effect of Harmonic Distortion Levels in Industry. 2021 4th International Conference on Energy Conservation and Efficiency (ICECE), 1–7. https://doi.org/10.1109/ICECE51984.2021.9406283
dc.relationRicardo, E., López, A., Moisés, D., & Díaz, C. (2015). Escuela Politécnica Nacional escuela de formación de tecnólogos diseño y construcción de un tablero de control automático para la corrección del factor de potencia, empleando un módulo DCRA. Proyecto previo a la obtención del título de tecnólogo en electromecánica.
dc.relationRodríguez, J. R., Pontt, J., Huerta, R., Alzamora, G., Becker, N., Kouro, S., Cortés, P., & Lezana, P. (2005). Resonances in a high-power active-front-end rectifier system. IEEE Transactions on Industrial Electronics, 52(2), 482–488. https://doi.org/10.1109/TIE.2005.843907
dc.relationRodríguez, P., Candela, J. I., Luna, A., Asiminoaei, L., Teodorescu, R., & Blaabjerg, F. (2009). Current harmonics cancellation in three-phase four-wire systems by using a four-branch star filtering topology. IEEE Transactions on Power Electronics, 24(8), 1939–1950. https://doi.org/10.1109/TPEL.2009.2017810
dc.relationSagiroglu, S., Colak, I., & Bayindir, R. (2006). Power factor correction technique based on artificial neural networks. Energy Conversion and Management, 47(18–19), 3204– 3215. https://doi.org/10.1016/j.enconman.2006.02.018
dc.relationSalim, C. (2023). Series APF based on Five and Seven-level NPC Inverters using Modified PQ Method. EEA - Electrotehnica, Electronica, Automatica, 71(1), 22–29. https://doi.org/10.46904/eea.23.71.1.1108003
dc.relationSatish, G., Rameshkumar, K., Dhanasakkaravarthi, B., Jeyalakshmi, K., Chaudhary, S., & Singh, N. (2023). Non-Linear Controller Based 3- φ Shunt Active Filter for Improvement of Power Quality in Non-Linear Load. 2023 IEEE International Conference on Integrated Circuits and Communication Systems, ICICACS 2023, 1–4. https://doi.org/10.1109/ICICACS57338.2023.10099957
dc.relationSenthil Kumar, R., Surya Prakash, R., Yokesh Kiran, B., & Sahana, A. (2019). Reduction and elimination of harmonics using power active harmonic filter. International Journal of Recent Technology and Engineering, 8(2 Special Issue 3), 178–184. https://doi.org/10.35940/ijrte.B1033.0782S319
dc.relationSenthilkumar A., Poongothai K., Selvakumar S., Silambarasan M., & Raj, P. A.-D.-V. (2015). Mitigation of Harmonic Distortion in Microgrid System Using Adaptive Neural Learning Algorithm Based Shunt Active Power Filter. Procedia Technology, 21, 147– 154. https://doi.org/10.1016/j.protcy.2015.10.082
dc.relationShakeri, S., Rezaeian Koochi, M. H., Ansari, H., & Esmaeili, S. (2022). Optimal power quality monitor placement to ensure reliable monitoring of sensitive loads in the presence of voltage sags and harmonic resonances conditions. Electric Power Systems Research, 212(January), 108623. https://doi.org/10.1016/j.epsr.2022.108623
dc.relationShu, S., Zheng, Y., Xia, K., & Qi, G. (2021). Capacitive power tapping from insulated shield wire of overhead high voltage transmission lines with tuning. IEEE Transactions on Power Delivery, 36(1), 191–204. https://doi.org/10.1109/TPWRD.2020.2980163
dc.relationSingh, G. K., Singh, A. K., & Mitra, R. (2007). A simple fuzzy logic based robust active power filter for harmonics minimization under random load variation. Electric Power Systems Research, 77(8), 1101–1111. https://doi.org/10.1016/j.epsr.2006.09.006
dc.relationSoheili, A., Sadeh, J., & Bakhshi, R. (2018). Modified FFT based high impedance fault detection technique considering distribution non-linear loads: Simulation and experimental data analysis. International Journal of Electrical Power and Energy Systems, 94. https://doi.org/10.1016/j.ijepes.2017.06.035
dc.relationSuliman, M. M. (2019). Development of power factor correction using boost converter circuit [Universiti Tun Hussein Onn Malaysia]. http://eprints.uthm.edu.my/597/1/24p MUSTAFA MUSA SULIMAN.pdf
dc.relationTahir, M. J., Bakar, B. A., Alam, M. M., & Mazlihum, M. S. U. (2019). Optimal capacitor placement in a distribution system using ETAP software. Indonesian Journal of Electrical Engineering and Computer Science, 15(2). https://doi.org/10.11591/ijeecs.v15.i2.pp650-660
dc.relationWaleed, A., Javed, M. R., Tanveer Riaz, M., Virk, U. S., Khan, S., Mujtaba, A., Ahmad, S., & Arshad, G. (2020). Study on Hybrid Wind-Solar System for Energy Saving Analysis in Energy Sector. 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies: Idea to Innovation for Building the Knowledge Economy, ICoMET 2020. https://doi.org/10.1109/iCoMET48670.2020.9073901
dc.relationWaleed, A., Virk, U. S., Riaz, M. T., Mehmood, S. B., Ahmad, S., Javed, M. R., & Raza, A. (2019). Effectiveness and comparison of digital substations over conventional substations. Advances in Science, Technology and Engineering Systems, 4(4). https://doi.org/10.25046/aj040452
dc.relationXie, N., Zhou, J., & Zheng, B. (2018). An energy-based modeling and prediction approach for surface roughness in turning. International Journal of Advanced Manufacturing Technology, 96(5–8). https://doi.org/10.1007/s00170-018-1738-y
dc.relationYanet Silega Almenares. (2009). Caracterización del Motor de Inducción. Su influencia en el reactivo de la industria.
dc.relationZhang, C. X., & Zeng, Y. (2013). Voltage and reactive power control method for distribution grid. Asia-Pacific Power and Energy Engineering Conference, APPEEC. https://doi.org/10.1109/APPEEC.2013.6837313
dc.relationZheng, F., & Zhang, W. (2017). Long term effect of power factor correction on the industrial load: A case study. 2017 Australasian Universities Power Engineering Conference (AUPEC), 2017-Novem, 1–5. https://doi.org/10.1109/AUPEC.2017.8282382
dc.relationZuberi, M. J. S., Tijdink, A., & Patel, M. K. (2017). Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry. Applied Energy, 205(January), 85–104. https://doi.org/10.1016/j.apenergy.2017.07.121
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectBanco de condensadores
dc.subjectCompensación concentrada
dc.subjectCompensación distribuida
dc.subjectFactor de potencia
dc.subjectFiltro de armónicos
dc.subjectPeríodo de recuperación de la inversión
dc.subjectSistema eléctrico industrial
dc.subjectCapacitor bank
dc.subjectConcentrated compensation
dc.subjectDistributed compensation
dc.subjectPower factor
dc.subjectHarmonic filter
dc.subjectPayback period
dc.subjectIndustrial electrical system
dc.titleDiseño de un sistema de compensación de energía reactiva para el mejoramiento del factor de potencia en el PCC de un sistema eléctrico industrial con armónicos
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución