dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorMorais Smith, C.
dc.creatorIvlev, B.
dc.creatorBlatter, G.
dc.date2014-05-27T11:17:58Z
dc.date2016-10-25T18:13:22Z
dc.date2014-05-27T11:17:58Z
dc.date2016-10-25T18:13:22Z
dc.date1994-12-01
dc.date.accessioned2017-04-06T00:45:32Z
dc.date.available2017-04-06T00:45:32Z
dc.identifierPhysical Review B, v. 49, n. 6, p. 4033-4042, 1994.
dc.identifier0163-1829
dc.identifierhttp://hdl.handle.net/11449/64520
dc.identifierhttp://acervodigital.unesp.br/handle/11449/64520
dc.identifier10.1103/PhysRevB.49.4033
dc.identifierWOS:A1994MW35100043
dc.identifier2-s2.0-0242449755.pdf
dc.identifier2-s2.0-0242449755
dc.identifierhttp://dx.doi.org/10.1103/PhysRevB.49.4033
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/886344
dc.descriptionThe theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID which constitutes a system of two interacting quantum degrees of freedom coupled to the environment. The decay probability is obtained in the exponential approximation for the overdamped case. Close to the critical driving force of the system, the decay of the metastable state is determined by a unique instanton solution describing the symmetric decay of the phases in each of the two Josephson juctions. Upon reducing the external driving force a new regime is reached where the instanton splits. The doubling of the decay channels reduces the decreasing of the decay rate in the quantum regime. A current-temperature phase diagram is constructed based on the Landau theory of phase transitions. Depending on the external parameters the system develops either a first- or a second-order transition to the split-instanton regime. © 1994 The American Physical Society.
dc.languageeng
dc.relationPhysical Review B
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleMacroscopic quantum tunneling in a dc SQUID: Instanton splitting
dc.typeOtro


Este ítem pertenece a la siguiente institución