dc.contributorMontoya Castaño, Dolly
dc.contributorBioprocesos y Bioprospeccion
dc.contributorOSCAR LEONARDO ARAGON CAICEDO [0000000193632258]
dc.contributorhttps://www.researchgate.net/profile/Oscar-Aragon
dc.creatorAragón Caycedo, Oscar Leonardo
dc.date.accessioned2023-07-19T14:02:51Z
dc.date.accessioned2023-08-25T13:45:42Z
dc.date.available2023-07-19T14:02:51Z
dc.date.available2023-08-25T13:45:42Z
dc.date.created2023-07-19T14:02:51Z
dc.date.issued8-07-23
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84216
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8427010
dc.description.abstractLos azúcares y el glicerol pueden servir como sustratos de bajo costo en aplicaciones biotecnológicas para obtener varios intermediarios químicos con un alto valor agregado. La electrofermentación es una reciente tecnología con la que es posible mejorar y controlar la fermentación microbiana, especialmente con cepas del género Clostridium, aumentando la especificidad de las vías metabólicas. En este contexto, cepas bacterianas aisladas de suelos colombianos, y estrechamente relacionadas con Clostridium butyricum, se han identificado como eficientes productoras de solventes y ácidos, incluidos ácido acético, ácido butírico, etanol, butanol, acetona e hidrógeno a partir de glucosa o 1,3-propanodiol a partir de glicerol. En este trabajo se evalúa el efecto del suministro externo de electrones en la producción de metabolitos de interés comercial con una red metabólica de C. butyricum. Los resultados obtenidos de un modelo de simulación señalan que la interacción con el electrodo catódico mejora los rendimientos de productos reducidos. En concreto, utilizando glicerol como sustrato, la simulación indicó que el rendimiento medio del producto podría aumentar con 1,3-propanodiol (23%) e hidrógeno (45%). Por último, se estableció experimentalmente que la cepa nativa IBUN 158B es electroactiva y tiene la capacidad de incrementar los valores de rendimiento producto / sustrato de 1,3-PD (7 – 9%) cuando es sometida a la alimentación de pequeñas cantidades de electrones desde un cátodo en un proceso electrofermentación catódica y que el uso de transportadores de electrones como el Rojo Neutral incrementa los efectos de la electrofermentación alcanzando mayores valores de rendimiento cuando está presente en el medio de cultivo. En conclusión, la electrofermentación de Clostridium butyricum como técnica de cultivo bioelectroquímico tiene potencial como proceso de producción alternativo a la fermentación tradicional para controlar el estado redox durante la síntesis de bioquímicos y aumentar la producción de metabolitos de interés comercial. Pero se necesita más investigación básica y aplicada para dilucidar los mecanismos de transferencia de electrones y revelar los mecanismos reguladores subyacentes. (Texto tomado de la fuente)
dc.description.abstractSugars and glycerol can serve as low-cost substrates in biotechnological applications to obtain various chemical intermediates with high added value. Electrofermentation is a recent technology with which it is possible to improve and control microbial fermentation, especially with strains of the Clostridium genus, increasing the specificity of metabolic pathways. In this context, bacterial strains isolated from Colombian soils, and closely related to Clostridium butyricum. These strains have been efficient producers of solvents and acids, including acetic acid, butyric acid, ethanol, butanol, acetone, and hydrogen from glucose or 1,3-propanediol from glycerol. In this work, the production of commercial interest metabolites is assessed using an electron external supply with a metabolic network of C. butyricum. The simulation results show that the interaction with the cathode electrode improves the reduced product rates. Specifically, using glycerol as a substrate, the average yield of the product increases with 1,3-propanediol (23%) and hydrogen (45%). Finally, it was established experimentally that the native strain IBUN 158B is electroactive and has the capacity to increase the product/substrate yield values of 1,3-PD (7-9%) when it is submitted to the feeding of small amounts of electrons from a cathode in a cathodic electrofermentation process and that the use of electron carriers such as Neutral Red increases the effects of electrofermentation, reaching higher yield values when it is present in the culture medium. In conclusion, the electrofermentation of Clostridium butyricum as a bioelectrochemical culture technique has potential as an alternative production process to traditional fermentation to control the redox state during the synthesis of biochemicals and increase the production of metabolites of commercial interest. More basic and applied research is necessary to elucidate the mechanisms of electron transfer and reveal the underlying regulatory mechanisms.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Biotecnología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationVees CA, Neuendorf CS, Pflügl S (2020) Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives, Springer International Publishing.
dc.relationDahiya S, Katakojwala R, Ramakrishna S, et al. (2020) Biobased Products and Life Cycle Assessment in the Context of Circular Economy and Sustainability. Mater Circ Econ 2: 1–28.
dc.relationBaritugo KA, Kim HT, David Y, et al. (2018) Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 102: 3915–3937.
dc.relationKumar B, Verma P (2020) Biomass-based biorefineries: An important architype towards a circular economy. Fuel 119622
dc.relationSantos SCSC, Liebensteiner MGMG, van Gelder AHAH, et al. (2018) Bacterial glycerol oxidation coupled to sulfate reduction at neutral and acidic pH. J Gen Appl Microbiol 64: 1–8.
dc.relationCheng H-H, Whang L-M, Lin C-A, et al. (2013) Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Bioresour Technol 141: 233–239.
dc.relationDrozdzyńska A, Leja K, Czaczyk K, et al. (2011) Biotechnological production of 1,3-propanediol from crude glycerol. Biotechnologia 92: 92–100.
dc.relationSoares JF, Confortin TC, Todero I, et al. (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev 117: 109484.
dc.relationLiberato V, Benevenuti C, Coelho F, et al. (2019) Clostridium sp. As bio-catalyst for fuels and chemicals production in a biorefinery context. Catalysts 9
dc.relationPark J-H, Kim D-H, Baik J-H, et al. (2021) Improvement in H2 production from Clostridium butyricum by co-culture with Sporolactobacillus vineae. Fuel 285: 119051.
dc.relationCai G, Jin B, Monis P, et al. (2013) A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Biotechnol Bioeng 110: 338–342.
dc.relationVivek N, Pandey A, Binod P (2017) Production and applications of 1, 3-propanediol, Current developments in biotechnology and bioengineering, Elsevier, 719–738.
dc.relationXu BB, Ma C (2019) Advances in the production of 1, 3-propanediol by microbial fermentation. AIP Conf Proc 2110: 10–15.
dc.relationWang X-L, Zhou J-J, Shen J-T, et al. (2020) Sequential fed-batch fermentation of 1, 3-propanediol from glycerol by Clostridium butyricum DL07. Appl Microbiol Biotechnol 104: 1–13
dc.relationZhou JJJ-J, Shen J-TT, Wang X-LXL, et al. (2020) Metabolism, morphology and transcriptome analysis of oscillatory behavior of Clostridium butyricum during long-term continuous fermentation for 1, 3-propanediol production. Biotechnol Biofuels 13: 1–18.
dc.relationSu M-YMY, Li Y, Ge XZX-Z, et al. (2014) Insights into 3-hydroxypropionic acid biosynthesis revealed by overexpressing native glycerol dehydrogenase in Klebsiella pneumoniae. Biotechnol Biotechnol Equip 28: 762–768.
dc.relationZhang Y, Huang Z, Du C, et al. (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng 11: 101–106.
dc.relationakshmanan M, Chung BKS, Liu C, et al. (2013) Cofactor modification analysis: A computational framework to identify cofactor specificity engineering targets for strain improvement. J Bioinform Comput Biol 11: 1343006.
dc.relationAbbad-Andaloussi S, Amine J, Gerard P, et al. (1998) Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. J Appl Microbiol 84: 515–522.
dc.relationUtesch T, Sabra W, Prescher C, et al. (2019) Enhanced electron transfer of different mediators for strictly opposite shifting of metabolism in Clostridium pasteurianum grown on glycerol in a new electrochemical bioreactor. Biotechnol Bioeng 116: 1627–1643.
dc.relationToledo-Alarcón J, Fuentes L, Etchebehere C, et al. (2020) Glucose electro-fermentation with mixed cultures: A key role of the Clostridiaceae family. Int J Hydrogen Energy.
dc.relationZhou J, Wang X, Sun Y, et al. (2016) Progress on microbial electrosynthesis of bio-based chemicals. Huagong Jinzhan/Chemical Ind Eng Prog 35: 3005–3015.
dc.relationMoscoviz R, Desmond-Le Quéméner E, Trably E, et al. (2019) Bioelectrochemical Systems for the Valorization of Organic Residues, Biorefinery, Springer, 511–534.
dc.relationChoi O, Kim T, Woo HMHM, et al. (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4: 6961.
dc.relationUtesch T, Zeng A (2018) A novel All‐in‐One electrolysis electrode and bioreactor enable better study of electrochemical effects and electricity‐aided bioprocesses. Eng Life Sci 18: 600–610.
dc.relationUtesch T, Sabra W, Zeng AP (2016) Growth of Clostridium pasteurianum in bio-electrochemical H-cell reactor
dc.relationKim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10: 123–128.
dc.relationEngel M, Holtmann D, Ulber R, et al. (2019) Increased Biobutanol Production by Mediator-Less Electro-Fermentation. Biotechnol J 14
dc.relationChoi O, Um Y, Sang BIB-IBI (2012) Butyrate production enhancement by clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol Bioeng 109: 2494–2502.
dc.relationZhang Y, Li J, Meng J, et al. (2021) A neutral red mediated electro-fermentation system of Clostridium beijerinckii for effective co-production of butanol and hydrogen. Bioresour Technol 332: 125097.
dc.relationHe AY, Yin CY, Xu H, et al. (2016) Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. 39: 245–254.
dc.relationXafenias N, Kmezik C, Mapelli V (2017) Enhancement of anaerobic lysine production in Corynebacterium glutamicum electrofermentations. Bioelectrochemistry 117: 40–47.
dc.relationHaas T, Krause R, Weber R, et al. (2018) Technical photosynthesis involving CO2 electrolysis and fermentation. Nat Catal 2017 11 1: 32–39.
dc.relationJabeen G, Farooq R (2016) Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation. J Biosci 41: 367–380.
dc.relationBajracharya S, Ter Heijne A, Dominguez Benetton X, et al. (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195: 14–24.
dc.relationNevin KP, Hensley SA, Franks AE, et al. (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77: 2882–2886.
dc.relationKoch C, Kuchenbuch A, Kracke F, et al. (2017) Predicting and experimental evaluating bio-electrochemical synthesis — A case study with Clostridium kluyveri. Bioelectrochemistry 118: 114–122.
dc.relationVan Eerten-Jansen MCAAAA, Ter Heijne A, Grootscholten TIMM, et al. (2013) Bioelectrochemical Production of Caproate and Caprylate from Acetate by Mixed Cultures. ACS Sustain Chem Eng 1: 1069–1069.
dc.relationKluge M, Pérocheau Arnaud S, Robert T (2019) 1,3-Propanediol and its Application in Bio-Based Polyesters for Resin Applications. Chem Africa 2: 215–221.
dc.relationCheng C, Bao T, Yang S-TS-T (2019) Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 103: 5549–5566.
dc.relationAsopa RP, Ikram MM, Saharan VK (2022) Valorization of glycerol into 1,3-propanediol and organic acids using biocatalyst Saccharomyces cerevisiae. Bioresour Technol Reports 18
dc.relationKumar P, Mehariya S, Ray S, et al. (2014) Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers. Indian J Microbiol 2014 551 55: 1–7.
dc.relationAttarbachi T, Kingsley MD, Spallina V (2023) New trends on crude glycerol purification: A review. Fuel 340: 127485
dc.relationBautista S, Espinoza A, Narvaez P, et al. (2019) A system dynamics approach for sustainability assessment of biodiesel production in Colombia. Baseline simulation. J Clean Prod 213: 1–20
dc.relationde Souza TAZ, Pinto GM, Julio AAV, et al. (2022) Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil. Renew Sustain Energy Rev 153: 111755.
dc.relationLiu Y, Zhong B, Lawal A (2022) Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv 12: 27997–28008.
dc.relationDikshit PK, Moholkar VS (2019) Batch and repeated-batch fermentation for 1, 3-dihydroxyacetone production from waste glycerol using free, immobilized and resting Gluconobacter oxydans cells. Waste and Biomass Valorization 10: 2455–2465.
dc.relationPott RWM, Howe CJ, Dennis JS (2014) The purification of crude glycerol derived from biodiesel manufacture and its use as a substrate by Rhodopseudomonas palustris to produce hydrogen. Bioresour Technol 152: 464–470
dc.relationLopes AP, Souza PR, Bonafé EG, et al. (2019) Purified glycerol is produced from the frying oil transesterification by combining a pre-purification strategy performed with condensed tannin polymer derivative followed by ionic exchange. Fuel Process Technol 187: 73–83.
dc.relationThompson JC, He BB (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric 22: 261–265.
dc.relationElgharbawy AS, Sadik W, Sadek OM, et al. (2021) A review on biodiesel feedstocks and production technologies. J Chil Chem Soc 66: 5098–5109.
dc.relationYildiz G, Ronsse F, Venderbosch R, et al. (2015) Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl Catal B Environ 168: 203–211.
dc.relationDi Fraia A, Miliotti E, Rizzo AM, et al. (2023) Coupling hydrothermal liquefaction and aqueous phase reforming for integrated production of biocrude and renewable H2. AIChE J 69: e17652.
dc.relationSamul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64: 891–898.
dc.relationBoga DA, Liu F, Bruijnincx PCA, et al. (2016) Aqueous-phase reforming of crude glycerol: effect of impurities on hydrogen production. Catal Sci \& Technol 6: 134–143.
dc.relationViana MB, Freitas A V, Leitão RC, et al. (2012) Anaerobic digestion of crude glycerol: a review. Environ Technol Rev 1: 81–92.
dc.relationPagliaro M (2017) C3-Monomers. Glycerol Renew Platf Chem 23–57.
dc.relationAsopa RP, Bhoi R, Saharan VK (2022) Valorization of glycerol into value-added products: A comprehensive review on biochemical route. Bioresour Technol Reports 20.
dc.relationCrosse AJ, Brady D, Zhou N, et al. (2019) Biodiesel’s trash is a biorefineries’ treasure: the use of “dirty” glycerol as an industrial fermentation substrate. World J Microbiol Biotechnol 2019 361 36: 1–5.
dc.relationJuturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36: 967–977.
dc.relationGarlapati VKVK, Shankar U, Budhiraja A (2016) Bioconversion technologies of crude glycerol to value added industrial products. Biotechnol Reports 9: 9–14.
dc.relationKaur J, Sarma AK, Jha MK, et al. (2020) Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol Reports 27: e00487.
dc.relationLiu H, Xu Y, Zheng Z, et al. (2010) 1,3-Propanediol and its copolymers: Research, development and industrialization. Biotechnol J 5: 1137–1148.
dc.relationPapanikolaou S, Ruiz-Sanchez P, Pariset B, et al. (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77: 191–208.
dc.relationFokum E, Zabed HM, Yun J, et al. (2021) Recent technological and strategical developments in the biomanufacturing of 1,3-propanediol from glycerol. Int J Environ Sci Technol 18: 2467–2490.
dc.relationSun YQ, Shen JT, Yan L, et al. (2018) Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges. Process Biochem 71: 134–146.
dc.relationda Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, et al. (2020) Catalysts for glycerol hydrogenolysis to 1,3-propanediol: A review of chemical routes and market. Catal Today 381: 243–253.
dc.relationCen X, Dong Y, Liu D, et al. (2023) Microbial Production of C2-C5 Diols1. Handb Biorefinery Res Technol 1–32.
dc.relationBiebl H, Menzel K, Zeng A-PP, et al. (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52: 289–297
dc.relationForsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53: 639–643.
dc.relationBaeza-Jiménez R, Lopez-Martinez LX, de la Cruz-Medina J, et al. (2011) Effect of glucose on 1,3-propanediol production by Lactobacillus reuteri | Efecto de la glucosa sobre la producción de 1,3-propanodiol por Lactobacillus reuteri. Rev Mex Ing Quim 10: 39–46.
dc.relationCelinska E, Celińska E, Celinska E, et al. (2012) Klebsiella spp as a 1, 3-propanediol producer: the metabolic engineering approach. Crit Rev Biotechnol 32: 274–288.
dc.relationChatzifragkou A, Papanikolaou S, Kopsahelis N, et al. (2014) Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Bioresour Technol 159: 167–175.
dc.relationDietz D, Zeng A-PAP (2014) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37: 225–233.
dc.relationFerreira TFTF, Saab VDSVDS, De Matos PMPMPM, et al. (2014) Evaluation of 1,3-propanediol production from glycerine by clostridium butyricum ncimb 8082. Chem Eng Trans 38: 475–480.
dc.relationHao J, Wang W, Tian J, et al. (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 35: 735–741.
dc.relationJensen TOTØO, Kvist T, Mikkelsen MJMJ, et al. (2012) Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol. AMB Express 2: 1–7.
dc.relationKivisto A, Santala V, Karp M (2012) 1,3-Propanediol production and tolerance of a halophilic fermentative bacterium, Halanaerobium saccharolyticum subsp. saccharolyticum. J Biotechnol 158: 242–247.
dc.relationkubiak P, Leja K, Myszka K, et al. (2012) Physiological predisposition of various Clostridium species to synthetize 1,3-propanediol from glycerol. Process Biochem 47: 1308–1319.
dc.relationLee CS, Aroua MK, Daud WMAW, et al. (2015) A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustain Energy Rev 42: 235–244.
dc.relationAnand P, Saxena RK (2012) A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N Biotechnol 29: 199–205.
dc.relationSzymanowska-Powałowska D, Orczyk D, Leja K, et al. (2014) Biotechnological potential of Clostridium butyricum bacteria. Braz J Microbiol 45: 892–901.
dc.relationZhou S, Li L, Perseke M, et al. (2015) Isolation and characterization of a Klebsiella pneumoniae strain from mangrove sediment for efficient biosynthesis of 1,3-propanediol. Sci Bull 60: 511–521.
dc.relationChen X, Zhang D-JJ, Qi W-TT, et al. (2003) Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63: 143–146.
dc.relationCheng K-KKK, Liu H-JHJ, Liu DHD-H (2005) Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett 27: 19–22.
dc.relationHartlep M, Hussmann W, Prayitno N, et al. (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60: 60–66.
dc.relationAbbad-Andaloussi S, Manginot-Durr C, Amine J, et al. (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61: 4413–4417.
dc.relationBiebl H (1991) Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl Microbiol Biotechnol 35: 701–705.
dc.relationGonzález-Pajuelo M, Andrade JCC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31: 442–446.
dc.relationSaint-Amans S, Girbal L, Andrade J, et al. (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183: 1748–1754
dc.relationGungormusler-Yilmaz M, Shamshurin D, Grigoryan M, et al. (2014) Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1,3-propanediol synthesis at high glycerol loading. AMB Express 4: 1–14.
dc.relationRampy MA, Chou TS, Pinchuk AN, et al. (1995) Synthesis and biological evaluation of radioiodinated phospholipid ether analogs. Nucl Med Biol 22: 505–512.
dc.relationZhou M, Tu H, He Y, et al. (2020) Synthesis of an oligomeric thickener for supercritical carbon dioxide and its properties. J Mol Liq 312.
dc.relationBiebl H (2001) Fermentation of glycerol by Clostridium pasteurianum - Batch and continuous culture studies. J Ind Microbiol Biotechnol 27: 18–26.
dc.relationO’Brien JR, Raynaud C, Croux C, et al. (2004) Insight into the Mechanism of the B12-Independent Glycerol Dehydratase from Clostridium butyricum: Preliminary Biochemical and Structural Characterization. Biochemistry 43: 4635–4645.
dc.relationSun J, Van Den Heuvel J, Soucaille P, et al. (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19: 263–272.
dc.relationSaxena RK, Anand P, Saran S, et al. (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 27: 895–913.
dc.relationBizukojc M, Dietz D, Sun J, et al. (2010) Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess Biosyst Eng 33: 507–523.
dc.relationCho S, Kim T, Woo HMHM, et al. (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8: 146.
dc.relationMalaoui H, Marczak R (2001) Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Appl Microbiol Biotechnol 55: 226–233.
dc.relationZeng A-PP, Biebl H, Schlieker H, et al. (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: Regulation of reducing equivalent balance and product formation. Enzyme Microb Technol 15: 770–779.
dc.relationZeng A-PP (1996) Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Eng 14: 169–175.
dc.relationYun J, Zabed HM, Zhang Y, et al. (2022) Improving tolerance and 1,3-propanediol production of Clostridium butyricum using physical mutagenesis, adaptive evolution and genome shuffling. Bioresour Technol 363.
dc.relationSchmitz R, Sabra W, Arbter P, et al. (2019) Improved electrocompetence and metabolic engineering of Clostridium pasteurianum reveals a new regulation pattern of glycerol fermentation. Eng Life Sci 19: 412–422.
dc.relationBarbirato F, Grivet JPJP, Soucaille P, et al. (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62: 1448–1451.
dc.relationWang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31: 1796–1807
dc.relationZhou M, Chen J, Freguia S, et al. (2013) Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol Mi. Environ Sci Technol 47: 1–16
dc.relationTremblay P-L, Zhang T (2015) Electrifying microbes for the production of chemicals. Front Microbiol 6.
dc.relationdeCamposRodrigues T, Rosenbaum MA (2014) Microbial Electroreduction: Screening for New Cathodic Biocatalysts. ChemElectroChem 1: 1916–1922
dc.relationEl-Naggar MY, Wanger G, Leung KM, et al. (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 107: 18127–18131.
dc.relationVarcoe JR, Atanassov P, Dekel DR, et al. (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7: 3135–3191
dc.relationAndersen SJ, Hennebel T, Gildemyn S, et al. (2014) Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ Sci Technol 48: 7135–7142
dc.relationLovley DR (2017) Syntrophy Goes Electric: Direct Interspecies Electron Transfer. Annu Rev Microbiol 71: 643–664.
dc.relationRosenbaum M, Aulenta F, Villano M, et al. (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102: 324–333
dc.relationStrycharz SM, Woodard TL, Johnson JP, et al. (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74: 5943–5947
dc.relationMarsili E, Baron DB, Shikhare ID, et al. (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105: 3968–3973
dc.relationxia X, Cao XX, Liang P, et al. (2010) Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Appl Microbiol Biotechnol 87: 383–390
dc.relationPham TH, Boon N, Aelterman P, et al. (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77: 1119–1129.
dc.relationThrash JC, Van Trump JI, Weber KA, et al. (2007) Electrochemical Stimulation of Microbial Perchlorate Reduction. Environ Sci Technol 41: 1740–1746
dc.relationPark DH, Laivenieks M, Guettler M V., et al. (1999) Microbial Utilization of Electrically Reduced Neutral Red as the Sole Electron Donor for Growth and Metabolite Production. Appl Environ Microbiol 65: 2912
dc.relationLi J, Zhang Y, Sun K, et al. (2022) Optimization of a cathodic electro-fermentation process for enhancing co-production of butanol and hydrogen via acetone-butanol-ethanol fermentation of Clostridium beijerinckii. Energy Convers Manag 251: 114987
dc.relationZheng T, Li J, Ji Y, et al. (2020) Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism. Front Bioeng Biotechnol 8: 10.
dc.relationHarrington TD, Tran VN, Mohamed A, et al. (2015) The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour Technol 192: 689–695
dc.relationXafenias N, Anunobi MOSO, Mapelli V (2015) Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations. Process Biochem 50: 1499–1508
dc.relationSelembo PA, Perez JM, Lloyd WA, et al. (2009) Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures. Biotechnol Bioeng 104: 1098–1106
dc.relationDennis PGPG, Harnisch F, Yeoh YKYKYK, et al. (2013) Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 79: 4008–4014.
dc.relationZhou M, Yang J, Wang H, et al. (2013) Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. Environ Technol (United Kingdom) 34: 1915–1928.
dc.relationMoscoviz R, Flayac C, Desmond-Le Quéméner E, et al. (2017) Revealing extracellular electron transfer mediated parasitism: energetic considerations. Sci Rep 7: 7766.
dc.relationSadhukhan J, Lloyd JR, Scott K, et al. (2016) A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew Sustain Energy Rev 56: 116–132.
dc.relationKracke F, Virdis B, Bernhardt P V., et al. (2016) Redox dependent metabolic shift in Clostridium autoethanogenum by extracellular electron supply. Biotechnol Biofuels 9: 249.
dc.relationZhang C, Traitrongsat P, Zeng A-P (2023) Electrochemically mediated bioconversion and integrated purification greatly enhanced co-production of 1,3-propanediol and organic acids from glycerol in an industrial bioprocess. Bioprocess Biosyst Eng 2023 1–11.
dc.relationKim C, Lee JJHJJH, Baek J, et al. (2020) Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17. ChemSusChem 13: 564–573
dc.relationJourdin L, Sousa J, van Stralen N, et al. (2020) Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application. Appl Energy 279: 115775
dc.relationKhosravanipour Mostafazadeh A, Drogui P, Brar SK, et al. (2017) Microbial electrosynthesis of solvents and alcoholic biofuels from nutrient waste: A review. J Environ Chem Eng 5: 940–954
dc.relationNagendranatha Reddy C, Mehariya S, Kavitha S, et al. (2020) Electro-Fermentation of biomass for high-value organic acids. Biorefineries A Step Towar Renew Clean Energy 417–436.
dc.relationEscapa A, Mateos R, Martinez EJ, et al. (2016) Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55: 942–956
dc.relationGadkari S, Beigi BHM, Aryal N, et al. (2021) Microbial electrosynthesis: is it sustainable for bioproduction of acetic acid? RSC Adv 11: 9921–9932
dc.relationLiu Z, Xue X, Cai W, et al. (2023) Recent progress on microbial electrosynthesis reactor designs and strategies to enhance the reactor performance. Biochem Eng J 190: 108745
dc.relationAl-Mamun A, Ahmed W, Jafary T, et al. (2023) Recent advances in microbial electrosynthesis system: Metabolic investigation and process optimization. Biochem Eng J 196: 108928
dc.relationSavla N, Pandit S, Verma JP, et al. (2021) Techno-economical evaluation and life cycle assessment of microbial electrochemical systems: A review. Curr Res Green Sustain Chem 4: 100111
dc.relationHoeger CD (2013) Foundational Work in Bioelectrochemical Anaerobic Reactor Design with Electron Mediators.
dc.relationRodriguez J, Premier GC (2010) Towards a mathematical description of bioelectrochemical systems, Bioelectrochemical systems, London., 423–448.
dc.relationGadkari S, Gu S, Sadhukhan J (2018) Towards automated design of bioelectrochemical systems: A comprehensive review of mathematical models. Chem Eng J 343: 303–316
dc.relationKazemi M, Biria D, Rismani-Yazdi H (2015) Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O. Phys Chem Chem Phys 17: 12561–12574.
dc.relationGadkari S, Shemfe M, Modestra JA, et al. (2019) Understanding the interdependence of operating parameters in microbial electrosynthesis: A numerical investigation. Phys Chem Chem Phys 21: 10761–10772
dc.relationAbel AJ, Clark DS (2021) A Comprehensive Modeling Analysis of Formate-Mediated Microbial Electrosynthesis**. ChemSusChem 14: 344–355
dc.relationSalimijazi F, Kim J, Schmitz AM, et al. (2020) Constraints on the Efficiency of Engineered Electromicrobial Production. Joule 4: 2101–2130.
dc.relationPassi A, Tibocha-Bonilla JD, Kumar M, et al. (2021) Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites 12
dc.relationCabau-Peinado O, Straathof AJJ, Jourdin L (2021) A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO2. Front Microbiol 12: 1405
dc.relationPandit A V., Mahadevan R (2011) In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Fact 10: 76
dc.relationKracke F, Krömer JO (2014) Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15
dc.relationMarshall CW, Ross DE, Handley KM, et al. (2017) Metabolic reconstruction and modeling microbial electrosynthesis. Sci Rep 7: 1–12
dc.relationGallardo R, Acevedo A, Quintero J, et al. (2016) In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply. Bioprocess Biosyst Eng 39: 295–305
dc.relationWu C, Cano M, Gao X, et al. (2020) A quantitative lens on anaerobic life: leveraging the state-of-the-art fluxomics approach to explore clostridial metabolism. Curr Opin Biotechnol 64: 47–54
dc.relationMaertens J, Vanrolleghem PA (2010) Modeling with a view to target identification in metabolic engineering: A critical evaluation of the available tools. Biotechnol Prog 26: 313–331
dc.relationTrinh CT, Thompson RA (2012) Elementary mode analysis: A useful metabolic pathway analysis tool for reprograming microbial metabolic pathways. Subcell Biochem 64: 21–42
dc.relationStephanopoulos GN, Aristidou AA, Nielsen J (1998) Flux Analysis of Metabolic Networks. Metab Eng 581–627
dc.relationOrman MA, Berthiaume F, Androulakis IP, et al. (2011) Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems. Crit Rev Biomed Eng 39: 511
dc.relationMartínez I, Bennett GN, San KY (2010) Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab Eng 12: 499–509
dc.relationOrth JD, Thiele I, Palsson BOØ (2010) What is flux balance analysis? Nat Biotechnol 28: 245–248
dc.relationSchuster S, Pfeiffer T, Fell DA (2008) Is maximization of molar yield in metabolic networks favoured by evolution? J Theor Biol 252: 497–504
dc.relationReed JL, Palsson B (2004) Genome-Scale In Silico Models of E. coli Have Multiple Equivalent Phenotypic States: Assessment of Correlated Reaction Subsets That Comprise Network States. Genome Res 14: 1797
dc.relationWlaschin AP, Trinh CT, Srienc F (2005) Determination of the fractional contribution of individual elementary modes to the overall metabolism of Escherichia coli, AIChE Annual Meeting, Conference Proceedings, 8336
dc.relationArbter P (2022) Fluxomic and metabolomic studies on the electro-fermentation of Rhodosporidium toruloides and Clostridium pasteurianum for improved bioprocesses
dc.relationZanghellini J, Ruckerbauer DE, Hanscho M, et al. (2013) Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnol J 8: 1009–1016
dc.relationArbter P, Sinha A, Troesch J, et al. (2019) Redox governed electro-fermentation improves lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 294: 122122.
dc.relationVan Klinken JB, Willems Van Dijk K (2016) FluxModeCalculator: an efficient tool for large-scale flux mode computation. Bioinformatics 32: 1265–1266
dc.relationUllah E, Yosafshahi M, Hassoun S (2020) Towards scaling elementary flux mode computation. Brief Bioinform 21: 1875–1885
dc.relationKremling A (2013) Systems biology: Mathematical modeling and model analysis. Syst Biol Math Model Model Anal 1–362
dc.relationMontoya Castaño D (2013) Biotechnology Institute: Leader in Research, Development and Innovation. Rev Colomb Biotecnol 15: 5–7.
dc.relationMontoya D, Arévalo C, Gonzales S, et al. (2001) New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27: 329–335.
dc.relationQuilaguy Ayure DM, Suárez Moreno ZR, Aristizábal Gutierrez FA, et al. (2006) Genome analysis of thirteen Colombian clostridial strains by pulsed field gel electrophoresis. Electron J Biotechnol 9: 0
dc.relationBernal M, Tinoco LK, Torres L, et al. (2013) Evaluating Colombian Clostridium spp. strains’ hydrogen production using glycerol as substrate. Electron J Biotechnol 16: 6
dc.relationCárdenas DP, Pulido C, Aragón ÓL, et al. (2006) Evaluating Clostridium sp. native strains1, 3-propanediol production byfermentation from glycerol USP and raw glycerol from biodiesel production. Rev Colomb Ciencias Químico-Farmacéuticas 35: 120–137
dc.relationBarragan CE, Gutiérrez-Escobar AJAJ, Montoya Castaño D, et al. (2014) Computational analysis of 1,3-propanediol operon transcriptional regulators: Insights into Clostridium sp. Glycerol metabolism regulation. Univ Sci 20: 129–140
dc.relationComba Gonzalez N, Vallejo AFAF, Sanchez-Gomez M, et al. (2013) Protein identification in two phases of 1,3-propanediol production by proteomic analysis. J Proteomics 89: 255–264
dc.relationRosas-Morales JPJP, Perez-Mancilla X, López-Kleine L, et al. (2015) Draft genome sequences of Clostridium strains native to Colombia with the potential to produce solvents. Genome Announc 3
dc.relationSerrano-Bermúdez LLM, González Barrios AAF, Maranas CDC, et al. (2017) Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: Metabolic flux distribution of a strain cultured in glycerol. BMC Syst Biol 11: 58
dc.relationSerrano-Bermúdez LLM, González Barrios A, Montoya D, et al. (2018) Clostridium butyricum population balance model: Predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One 13: e0209447
dc.relationAragón ÓL (2007) Estudio de la viabilidad tecnica de la producción de 1,3-Propanodiol (1,3-PD) a partir de glicerol con nuevas cepas colombianas de Clostridium sp. a nivel de laboratorio
dc.relationMontoya D, Buitrago G, Pineda L (2016) Programa estratégico para la biotransformación sostenible de glicerina cruda en 1,3-propanodiol y prospectiva para desarrollar una biorefinería en ECODIESEL COLOMBIA SA - Informe final - Convocatoria 562-2012, Bogotá.
dc.relationGómez J (2016) Conceptual design of a downstream process of bio-based 1,3-propanediol.
dc.relationGómez Rodríguez J, Aragón Caycedo O, Paez Coy N, et al. (2015) Study of added value to crude glycerin from colombian biodiesel industry, through a biotechnological production process of 1,3-propanediol with native strains of clostridium sp., 10th European Congress of Chemical Engineering +3rd European Congress of Applied Biotechnology + 5th European Process Intensification Conference (ECCE10+ECAB3+EPIC5), Niza, Franci
dc.relationHernández Prada CF (2015) Modelamiento del circuito eléctrico equivalente de una celda de combustible microbiana para condiciones de estado estacionario.
dc.relationBanu J R, Usman T M M, S K, et al. (2021) A critical review on limitations and enhancement strategies associated with biohydrogen production. Int J Hydrogen Energy 46: 16565–16590
dc.relationAtasoy M, Cetecioglu Z (2020) Butyric acid dominant volatile fatty acids production : Bio-Augmentation of mixed culture fermentation by Clostridium butyricum. J Environ Chem Eng 8
dc.relationMarassi RJRJ, Igreja M, Uchigasaki M, et al. (2019) High strength bioethanol wastewater inoculated with single-strain or binary consortium feeding air-cathode microbial fuel cells. Environ Prog Sustain Energy 38: 380–386.
dc.relationArkin AP, Cottingham RW, Henry CS, et al. (2018) KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 36: 566.
dc.relationAllen B, Drake M, Harris N, et al. (2017) Using KBase to assemble and annotate prokaryotic genomes. Curr Protoc Microbiol 46: 1E – 13
dc.relationEdirisinghe JN, Faria JP, Harris NL, et al. (2018) Reconstruction and Analysis of Central Metabolism in Microbes, Metabolic Network Reconstruction and Modeling, Springer, 111–129
dc.relationHenry CS, DeJongh M, Best AA, et al. (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28: 977
dc.relationPapoutsakis ET (2000) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 67: 813–826
dc.relationSenger RS, Papoutsakis ET (2008) Genome‐scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101: 1036–1052
dc.relationKanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30
dc.relationShi L, Dong H, Reguera G, et al. (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14: 651–662.
dc.relationUnrean P, Nguyen NHA (2013) Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis. Bioprocess Biosyst Eng 36: 45–56
dc.relationMatlab S (2012) Matlab. MathWorks, Natick, MA.
dc.relationvon Kamp A, Thiele S, Hädicke O, et al. (2017) Use of CellNetAnalyzer in biotechnology and metabolic engineering. J Biotechnol 261: 221–228
dc.relationDevore J (2011) Probability and Statistics for Engineering and the Sciences, Nelson Education.
dc.relationSolomon BOO, Zeng A-PP, Biebl H, et al. (1995) Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol. J Biotechnol 39: 107–117
dc.relationHeyndrickx M, De Vos P, Vancanneyt M, et al. (1991) The fermentation of glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285. Appl Microbiol Biotechnol 34: 637–642
dc.relationQuilaguy Ayure DM, Montoya Solano JD, Suárez Moreno ZR, et al. (2010) Analysing the dhaT gene in Colombian Clostridium sp.(Clostridia) 1, 3-propanediol-producing strains. Univ Sci 15: 17–26
dc.relationBiebl H, Spröer C (2002) Taxonomy of the glycerol fermenting clostridia and description of Clostridium diolis sp. nov. Syst Appl Microbiol 25: 491–497
dc.relationHarrington TD, Mohamed A, Tran VN, et al. (2015) Neutral red-mediated electro-fermentation by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis. BIOELECTROCHEMICAL Syst ENERGY BIOCOMMODITY Prod 66.
dc.relationArbter P, Sabra W, Utesch T, et al. (2021) Metabolomic and kinetic investigations on the electricity-aided production of butanol by Clostridium pasteurianum strains. Eng Life Sci 21: 181–195
dc.relationKaur G, Srivastava AKAKAK, Chand S (2012) Simple strategy of repeated batch cultivation for enhanced production of 1,3-propanediol using clostridium diolis. Appl Biochem Biotechnol 167: 1061–1068
dc.relationWang J, Yin Y (2021) Clostridium species for fermentative hydrogen production: An overview. Int J Hydrogen Energy 46: 34599–34625
dc.relationGirbal L, Croux C, Vasconcelos I, et al. (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17: 287–297
dc.relationGirbal L, Vasconcelos I, Saint‐Amans S, et al. (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16: 151–162
dc.relationByung-Hong K, Zeikus JG, Zeikus; JG (1992) Hydrogen Metabolism in Clostridium acetobutylicum Fermentation. J Microbiol Biotechnol 2: 248–254
dc.relationNasser Al-Shorgani NK, Kalil MS, Wan Yusoff WM, et al. (2015) Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1. Anaerobe 36: 65–72
dc.relationUjor V, Okonkwo C, Ezeji TC (2016) Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. Appl Microbiol Biotechnol 100: 1089–1099.
dc.relationHipolito CN, Crabbe E, Badillo CM, et al. (2008) Bioconversion of industrial wastewater from palm oil processing to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J Clean Prod 16: 632–638
dc.relationLi X, Li ZG, Shi ZP (2014) Metabolic flux and transcriptional analysis elucidate higher butanol/acetone ratio feature in ABE extractive fermentation by clostridium acetobutylicum using cassava substrate. Bioresour Bioprocess 1: 1–13
dc.relationPark HS, Kim BH, Kim HS, et al. (2001) A Novel Electrochemically Active and Fe(III)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell. Anaerobe 7: 297–306.
dc.relationMartin AL, Satjaritanun P, Shimpalee S, et al. (2018) In-situ electrochemical analysis of microbial activity. AMB Express 8: 1–10
dc.relationMartin A (2015) Use of Electrochemistry to Monitor the Growth and Activity of Clostridium phytofermentans. All Theses
dc.relationChatzifragkou A, Dietz D, Komaitis M, et al. (2010) Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107: 76–84
dc.relationBatlle-Vilanova P, Puig S, Gonzalez-Olmos R, et al. (2016) Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. J Chem Technol Biotechnol 91: 921–927
dc.relationGuerrero K, Gallardo R, Gonzalez E, et al. (2021) Butanol production by Clostridium acetobutylicum ATCC 824 by electro-fermentation in culture medium supplemented with butyrate and neutral red. Artic J Chem Technol Biotechnol
dc.relationSriram S, Wong JWC, Pradhan N (2022) Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. Bioresour Technol 360: 127637.
dc.relationVollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: Applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64: 16–27.
dc.relationZheng Z-M, Wang T-P, Xu Y-Z, et al. (2011) Inhibitory mechanism of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol synthesis with Klebsiella pneumoniae. African J Biotechnol 10: 6794–6798.
dc.relationColin T, Bories A, Moulin G (2000) Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl Microbiol Biotechnol 54: 201–205.
dc.relationVenkataramanan KPKP, Boatman JJJJ, Kurniawan Y, et al. (2012) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 93: 1325–1335.
dc.relationDamasceno APK, Rossi DM, Ayub MAZ (2022) Biosynthesis of 1,3-propanodiol and 2,3-butanodiol from residual glycerol in continuous cell-immobilized Klebsiella pneumoniae bioreactors. Biotechnol Prog 38.
dc.relationLuo H, Yang R, Zhao Y, et al. (2018) Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol 253: 343–354.
dc.relationIsar J, Joshi H, Rangaswamy V (2019) 1,3-Propanediol: From Waste to Wardrobe, High Value Fermentation Products, Hoboken, NJ, USA, John Wiley & Sons, Inc., 281–318.
dc.relationBarbirato F, Himmi EHEH, Conte T, et al. (1998) 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Ind Crops Prod 7: 281–289.
dc.relationHimmi EHEH, Bories A, Barbirato F (1999) Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour Technol 67: 123–128.
dc.relationDa Silva GPGP, De Lima CJBCJB, Contiero J (2015) Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal Today 257: 259–266.
dc.relationWilkens E, Ringel AKAKAK, Hortig D, et al. (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93: 1057–1063.
dc.relationLoureiro-Pinto M, González-Benito G, Coca M, et al. (2016) Valorization of crude glycerol from the biodiesel industry to 1,3-propanediol byClostridium butyricumDSM 10702: Influence of pretreatment with ion exchange resins. Can J Chem Eng 94: 1242–1248.
dc.relationBiebl H, Marten S, Hippe H, et al. (1992) Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl Microbiol Biotechnol 36: 592–597.
dc.relationSzymanowska-Powałowska D, Białas W, Szymanowska-Powalowska D, et al. (2014) Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol. BMC Microbiol 14: 45.
dc.relationPetitdemange E, Dürr C, Andaloussi SAA, et al. (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15: 498–502.
dc.relationPapanikolaou S, Fick M, Aggelis G (2004) The effect of raw glycerol concentration on the production of 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 79: 1189–1196.
dc.relationZhang AH, Zhuang XY, Chen KN, et al. (2019) Adaptive evolution of Clostridium butyricum and scale-Up for high-Concentration 1,3-propanediol production. AIChE J 65: 32–39.
dc.relationHirschmann S, Baganz K, Koschik I, et al. (2005) Development of an integrated bioconversion process for the production of 1,3-propanediol from raw glycerol waters. Landbauforsch Völkenrode 55: 261–267.
dc.relationTee ZKZK, Jahim JM, Tan JPJPJP, et al. (2017) Preeminent productivity of 1,3-propanediol by Clostridium butyricum JKT37 and the role of using calcium carbonate as pH neutraliser in glycerol fermentation. Bioresour Technol 233: 296–304.
dc.relationMartins FFFF, Saab VSVSVS, Ribeiro CMSCMS, et al. (2016) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel derived glycerol. Chem Eng Trans 50: 289–294.
dc.relationLan Y, Feng J, Guo X, et al. (2021) Isolation and characterization of a newly identified Clostridium butyricum strain SCUT343-4 for 1,3-propanediol production. Bioprocess Biosyst Eng 44: 2375–2385.
dc.relationChatzifragkou A, Papanikolaou S, Dietz D, et al. (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91: 101–112.
dc.relationSaint-Amans S, Perlot P, Goma G, et al. (1994) High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnol Lett 16: 831–836.
dc.relationCheng K-K, Ling H-Z, Zhang L-L, et al. (2004) Effect of glucose as cosubstrate on 1,3-propanediol fermentation by Klebsiella pneumoniae. Guocheng Gongcheng Xuebao/The Chinese J Process Eng 4: 561–566.
dc.relationJi X-JXJ, Huang HH, Zhu J-GJG, et al. (2009) Efficient 1,3-propanediol production by fed-batch culture of klebsiella pneumoniae: The role of pH fluctuation. Appl Biochem Biotechnol 159: 605–613.
dc.relationReimann A, Biebl H (1996) Production of 1,3-propanediol by Clostridium butyricum DSM 5431 and product tolerant mutants in fedbatch culture: Feeding strategy for glycerol and ammonium. Biotechnol Lett 18: 827–832.
dc.relationKaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64: 106–118.
dc.relationMetsoviti M, Paramithiotis S, Drosinos EHEHEH, et al. (2012) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol and ethanol. Eng Life Sci 12: 57–68.
dc.relationZeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74: 239–259.
dc.relationChatzifragkou A, Aggelis G, Komaitis M, et al. (2011) Impact of anaerobiosis strategy and bioreactor geometry on the biochemical response of Clostridium butyricum VPI 1718 during 1,3-propanediol fermentation. Bioresour Technol 102: 10625–10632.
dc.relationMenzel K, Zeng A-PP, Deckwer W-DD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20: 82–86.
dc.relationXiu Z-LZL, Song B-HBH, Wang Z-TZT, et al. (2004) Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochem Eng J 19: 189–197.
dc.relationReimann A, Biebl H, Deckwer W-DD (1998) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49: 359–363.
dc.relationBoenigk R, Bowien S, Gottschalk G (1993) Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol 38: 453–457.
dc.relationWang Y, Teng HH, Xiu Z (2011) Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations. J Ind Microbiol Biotechnol 38: 705–715.
dc.relationMu Y, Xiu Z-LZL, Zhang DJD-J (2008) A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochem Eng J 40: 537–541.
dc.relationAgrawal D, Budakoti M, Kumar V (2023) Strategies and tools for the biotechnological valorization of glycerol to 1, 3-propanediol: Challenges, recent advancements and future outlook. Biotechnol Adv 108177.
dc.relationNakamura CECE, Whited GMGM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14: 454–459.
dc.relationGonzález-Pajuelo M, Meynial-Salles I, Mendes F, et al. (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7: 329–336.
dc.relationMartins FF, Liberato VDSS, Ribeiro CMS, et al. (2020) Low-cost medium for 1,3-propanediol production from crude glycerol by Clostridium butyricum. Biofuels, Bioprod Biorefining 14: 1125–1134.
dc.relationvan Heerden C (2023) Techno-economic analysis of 1, 3-propanediol, sorbitol, itaconic acid, and xylooligosaccharides production from sugarcane-based feedstocks.
dc.relationEspinel-Ríos S, Ruiz-Espinoza JEE (2019) Production of 1,3-propanediol from crude glycerol: Bioprocess design and profitability analysis | Producción de 1,3-propanodiol a partir de glicerol crudo: Diseño del bioproceso y análisis de rentabilidad. Rev Mex Ing química 18: 831–840.
dc.relationEnzmann F, Stöckl M, Zeng AP, et al. (2019) Same but different–Scale up and numbering up in electrobiotechnology and photobiotechnology. Eng Life Sci 19: 121–132.
dc.relationScopus (2023) Elsevier, Scopus [Database]. Available at: https://www.scopus.com, 2023.
dc.relationKim BH, Lim SS, Daud WRW, et al. (2015) The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour Technol 190: 395–401.
dc.relationKracke F, Vassilev I, Krömer JOJO, et al. (2015) Microbial electron transport and energy conservation - The foundation for optimizing bioelectrochemical systems. Front Microbiol 6: 1–18.
dc.relationArbter P, Widderich N, Utesch T, et al. (2022) Control of redox potential in a novel continuous bioelectrochemical system led to remarkable metabolic and energetic responses of Clostridium pasteurianum grown on glycerol. Microb Cell Fact 21.
dc.relationBhagchandanii DD, Babu RP, Sonawane JM, et al. (2020) A Comprehensive Understanding of Electro-Fermentation. Fermentation 6: 92.
dc.relationNevin KP, Woodard TL, Franks AE, et al. (2010) Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1.
dc.relationChandrasekhar K, Naresh Kumar A, Kumar G, et al. (2021) Electro-fermentation for biofuels and biochemicals production: Current status and future directions. Bioresour Technol 323: 124598.
dc.relationRabaey K, Rozendal RA (2010) Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat Rev Microbiol 2010 810 8: 706–716.
dc.relationJun S-ASA, Moon C, Kang C-HCH, et al. (2010) Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161: 491–501.
dc.relationSim YB, Yang J, Kim SM, et al. (2022) Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production. Bioresour Technol 366: 128181
dc.relationSerrano Bermúdez LM (2016) Análisis de balance de flujo dinámico de la producción de 1, 3-Propanodiol a partir de Clostridium sp.
dc.relationTracy BPBP, Jones SWSW, Fast AGAG, et al. (2012) Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23: 364–381
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio de un sistema bio-electroquímico de fermentación para la producción de 1,3-propanodiol a partir de glicerina cruda
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución