dc.creatorChen, Q.
dc.creatorAndrade, J. E.
dc.creatorSamaniego, Esteban
dc.date.accessioned2015-06-10T13:10:18Z
dc.date.accessioned2022-10-20T20:47:19Z
dc.date.available2015-06-10T13:10:18Z
dc.date.available2022-10-20T20:47:19Z
dc.date.created2015-06-10T13:10:18Z
dc.date.issued2011-08-01
dc.identifierhttp://dspace.ucuenca.edu.ec/handle/123456789/21994
dc.identifierdoi: 10.1016 / j.cma.2011.04.022
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4598877
dc.description.abstractThis paper presents a sharp discontinuity multiscale approach to address key challenges in tracking the behavior modeling granular media: accommodation discontinuities in the kinematic fields, and the direct link to the underlying grain scale information. Concepts assumed enhanced strain (AES) are taken to improve elements of the post-localization analysis, but reformulated in a hierarchical multiscale computational framework recently proposed. Unlike traditional methods of AES, in material properties are usually constant or assumed to evolve with some arbitrary phenomenological laws, the framework provides a bridge to extract key parameters evolutions of material, such as friction and dilatancy based data of computational or experimental scale grain. More importantly, the softening module phenomenological methods typically used in AES is no longer necessary. Numerical examples of plane strain compression tests are presented to illustrate the applicability of this method and analyze numerical performance.
dc.languageeng
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/
dc.rightsopenAccess
dc.subjectMethod Assumed Improved Strain
dc.subjectStrong Discontinuities
dc.subjectLocation
dc.subjectMultiscale
dc.subjectDem
dc.subjectGranular Media
dc.titleAES for multiscale localization modeling in granular media
dc.typeArticle


Este ítem pertenece a la siguiente institución