dc.contributorVillarreal López, Jesús David
dc.contributorRamírez Pastrán, Jesús Antonio
dc.contributorhttps://orcid.org/0000-0001-7097-6314
dc.contributorhttps://orcid.org/0000-0002-9729-0993
dc.contributorhttps://scholar.google.com/citations?user=T-zgnQMAAAAJ&hl=es
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001519556
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001585933
dc.creatorCuéllar Hernández, Oscar Alberto
dc.creatorRincón Rodríguez, Ayder Fabian
dc.date.accessioned2020-10-23T00:42:59Z
dc.date.available2020-10-23T00:42:59Z
dc.date.created2020-10-23T00:42:59Z
dc.date.issued2020-10-22
dc.identifierCuéllar Hernández, O. A. & Rincón Rodríguez, A. F. (2020). Filtro por precipitación electrostática para la remoción de material particulado en el escape de motores Diesel [Tesis de Pregrado en Ingeniería Mecánica, Universidad Santo Tomás] Repositorio Institucional - Universidad Santo Tomás.
dc.identifierhttp://hdl.handle.net/11634/30535
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractSince the industrial revolution began, the world's population has experienced the effects of air pollution caused by fossil fuels. Year by year, the quality of the air we breathe have decreased due to the burning of fossil fuels that generate gases and particles that are harmful to health, mainly coming from Diesel automotive. Car manufacturers have chosen to reduce the emission of gases that are harmful to health through the production of new, improved and more efficient engines. However, there are no technological advances that really deal with environmental problems. It is then that the research is oriented towards electrostatic precipitators (ESP), focused on reducing pollutants. Studies have successfully shown that ESPs reduce these pollutants on a large scale, which is why this project explore the validity of a filter for vehicles that work on diesel and its possible implementation. The project seeks to simulate a precipitation filter considering the electrical component with which it is fed, and the behavior of the fluid within it, by using the MATLAB and ANSYS software. For this, a review of the operation of the ESP is carried out in order to establish a prototype of precipitator that is adaptable to cargo vehicles, taking into account the voltage requirement and the behavior of the gas flow through it, to present a proposal for a precipitator model that meets the appropriate flow conditions for the collection of the material, based on a collection percentage. Throughout the project, simulations with different operating conditions are developed to verify the feasibility of implementing the filter with the selected dimensions, and it is verified that the proposed model can be implemented in the different atmospheric conditions that occur in Colombia. Finally, the conditions in which the precipitator operates are reviewed to establish which of these are optimal, that is, to provide the maximum possible efficiency.
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Mecánica
dc.publisherFacultad de Ingeniería Mecánica
dc.relationWHO, «IARC: Diesel Engine Exhaust Carcinogenic,» World Health Organization, Lyon, France, 2012.
dc.relationA. Baraya Rubiano, «Colombia, cerca y lejos de Euro V,» 28 Julio 2017. [En línea]. Available: https://www.motor.com.co/actualidad/industria/colombia-cerca-lejos-euro-v/29098.
dc.relationAyuntamiento de Valladolid, «Red de Control de la Contaminación Atmosférica del Ayuntamiento de Valladolid,» 2020. [En línea]. Available: https://www.valladolid.es/en/rccava/contaminantes/material-particulado-pm10-pm2-5.
dc.relationInsituto para la Salud Geoambiental, «Qué hacemos: Material particulado,» 2013. [En línea]. Available: https://www.saludgeoambiental.org/material-particulado.
dc.relationWHO, «Health Effects of Particulate Matter: Policy implications for countries in eastern Europe, Caucasus and central Asia,» World Health Organization: Regional Office for Europe, Copenhagen, 2013.
dc.relationWHO, «Air Quality Guidelines Global Update 2005,» World Health Organization: Regional Office for Europe, Copenhagen, 2005.
dc.relationE. Samoli, R. Peng, T. Ramsay, M. Pipikou, G. Touloumi, F. Dominici, R. Burnett, A. Cohen, D. Krewski, J. Samet y K. Katsouyanni, «Acute effects of ambient particulate matter on mortality in Europe andNorth America: results from the APHENA Study,» Environmental Health Perspectives, vol. 116, p. 1480–1486, 2008.
dc.relationENHIS, «Exposure to Air Polution (Particulate Matter) in Outdoor Air,» Organización Mundial de la Salud: Regional for Europe, Copenhagen, 2011.
dc.relationP. M, G. U, B. R, W. M, G.-A. L, A. AM, B. X, B. C, C. M, F. F, d. H. K, G. R, G. O, H. G, J. A, K. C, K. IM, K. U, K. J, P. D y P. DS, «Elemental Constituents of Particulate Matter and Newborn’s Size in Eight European Cohorts,» Environ Health Perspect, p. 141–150, 2015.
dc.relationWHO, «Health Relevance Of Particulate Matter From Various Sources,» World Health Organization: Regional Office for Europe , Bonn, 2007.
dc.relationIARC, «Diesel and Gasoline Engine Exhaust and some Nitroarenes,» WHO: International Agency for Reseach on Cancer, Lyon, 2012.
dc.relationIARC, «Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures,» WHO: International Agency for Research on Cancer, Lyon, 2010.
dc.relationIARC, «Household Use of Solid Fuels and High-temperature Frying,» WHO: International Agency for Research on Cancer, Lyon, 2010.
dc.relationACEA, «Industry topics: Euro Standards,» 2020. [En línea]. Available: https://www.acea.be/industry-topics/tag/category/euro-standards.
dc.relationC. Carrión, «Abecé de la Ley que regula las emisiones de gases contaminantes de vehículos de ACPM y motocicletas,» PResidencia de la República, Bogotá, 2019.
dc.relationY. A. Cengel y M. A. Boles, Thermodynamics: An Engineering Approach, 5th edition, New York: McGraw-Hill Education, 2004.
dc.relationT. D. Eastop y A. Mcconkey, Applied Thermodynamics for Engineering Technologists, 5th edition, London, UK: Pearson Prentice Hall, 1993.
dc.relationJ. Heywood, Internal Combustion Engine Fundamentals, New York: McGraw-Hill Education, 1988.
dc.relationR. Prasad y V. R. Bella, «A Review on Diesel Soot Emission, its Effect and Control,» Bulletin of Chemical Reaction Engineering and Catalysis, pp. 69-86, 2010.
dc.relationA. Majewski W y M. K. Khair, Diesel Emissions and Their Control R-303, USA: SAE International, 2006.
dc.relationA. Azam, S. Ali y A. Lqbal, «Emissions from Diesel Engine and Exhaust After Treatment Technologies,» de 4th International Conference on Energy, Environment and Sustainable Development, Sindh, 2016.
dc.relationY. A. Cengel y J. M. Cimbala, Mecánica de Fluidos: Fundamentos y Aplicaciones, México, D.F.: McGraw-Hill Interamericana, 2006.
dc.relationR. L. Mott y J. A. Untener, Applied Fluid Mechanics, London: Pearson, 2015.
dc.relationY. A. Cengel y M. A. Boles, Termodinámica, México, D.F.: McGraw-Hill Interamericana, 2012.
dc.relationM. J. Castro, Trasnporte de momentum y calor. Teoría y aplicaciones a la ingeniería de proceso, Mérida, Yucatán: UADY, 2005.
dc.relationR. L. Mott y J. A. Untener, Applied Fluid Mechanics, London: Pearson, 2015, pp. 228, 231.
dc.relationS. Ebnesajjad, «Fluoroplastics, Volume 2,» Amsterdam, 2015.
dc.relationJ. L. Escamilla Reyes, R. M. Guadalupe García Castelán y L. J. Neri Vitela, Fluidos, ondas y calor. Volumen 1, Monterrey: Editorial Digital del Tecnológico de Monterrey, 2014.
dc.relationV. A. Chiliquinga Toro y J. G. Ramón Chávez, «Estudio de factibilidad de la ionización de partículas de CO2 emitidas por automotores a Diésel, para su empleo en el desarrollo de filtros electroestáticos,» Universidad Politécnica Salesiana, Quito, 2016.
dc.relationA. Sudrajad y A. Fitri Yusof, «Review of Electrostatic Precipitator Device for Reduce of Diesel Engine Particulate Matter,» Energy Procedia, vol. 68, pp. 370-380, 2015.
dc.relationA. Jaworek, A. Marchewicz, A. Sobczyk, A. Krupa y T. Czech, «Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission,» Progress in Energy and Combustion Science, vol. 67, pp. 206-233, 2018.
dc.relationH. Kawakami, A. Zukeran, K. Yasumoto, M. Kuboshima, Y. Ehara y T. Yamamoto, «Diesel Exhaust Particle Reduction using Electrostatic Precipitator,» International Journal of Plasma Environmental Science and Technology, vol. 5, nº 2, pp. 179-184, 2010.
dc.relationH. Hayashi, M. Kimura, K. Kawahara, Y. Takasaki, K. Takashima y A. Mizuno, «Collection of diesel exhaust using electrostatic charging prior to mechanical filtration.».
dc.relationZ. He y E. T. Mohan Dass, «Correlation of design parameters with performance for electrostatic Precipitator. Part I. 3D model development and validation.,» Applied Mathematical Modelling, vol. 57, pp. 633-655, 2018.
dc.relationD. Yang, B. Guo, X. Ye, A. Yu y J. Guo, «Numerical simulation of electrostatic precipitator considering the dust particle space charge,» Powder Technology, vol. 354, pp. 552-560, 2019.
dc.relationA. Srinivaas, S. Sathian y A. Ramesh, «Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust,» IOP Conference Series Materials Science and Engineering, vol. 310, nº 1, 2018.
dc.relationJ. H. Turner, P. A. Lawless, T. Yamamoto y D. W. Coy, «Controles de materia particulada,» Research Triangle Park, Durham, 1999.
dc.relationH. Lee, «Integrating Filtration Mechanism with 3D Diesel Particulate Filter (DPF) Model using STAR-CCM+,» de STAR Global Conference, Orlando, Florida, 2013.
dc.relationA. Fridman y L. A. Kennedy, Plasma Physics and Engineering, New York: CRC Press, 2004.
dc.relationK. L. Kaiser, Electrostatic Discharge, New York: CRC Press, 2005.
dc.relationM. J. Hurley, D. T. Gottuk y J. R. J. Hall, SFPE Handbook of Fire Protection Engineering, Switzerland: Springer, 2015, p. 683.
dc.relationG. Lüttgens, S. Lüttgens y W. Schubert, Static Electricity: Understanding, Controlling, Applying, Weinheim, Germany: John Wiley and Sons, 2017, p. 94.
dc.relationD. Wang y L.-S. Fan, Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Oxford: Woodhead Publishing, 2013, pp. 60-64.
dc.relationK. Zhang, S. Chen, L. Tan, M. Xu, H. Zhang y D. Zhang, «Study on Mechanism and Characteristics of Particle Charging In Electrostatic Precipitator,» IOP Conf. Series: Materials Science and Engineering, vol. 667, nº 3, 2019.
dc.relationPPC, «Lesson 3: ESP Design Parameters and their Effects on Collection Efficiency,» PPC industries, Texas, USA, 2020.
dc.relationT. Luke, «Evaluation of an Electrostatic Filter System for Capturing Diesel Engine Particulates,» UniSA, Adelaide, Australia, 2015.
dc.relationF. W. Peek, Dielectric Phenomena in High Voltage Engineering, Ann Arbor, Michigan: McGraw-Hill Book Company, 1920.
dc.relationS. Jennings, «The mean free path in air,» Journal of Aerosol Science, vol. 19, nº 2, pp. 159-166, 1988.
dc.relationB. E. Rapp, Microfluidics: Modelling, Mechanics and Mathematics, Amsterdam: Elsevier, 2017.
dc.relationE. Cunningham y J. Larmor, «On the Velocity of Steady Fcdl of Spherical Particles through Fluid Medium,» 19Proc. R. Soc., pp. 357-365, 1910.
dc.relationK. B. Schnelle y C. A. Brown, Air Pollution Control Technology Handbook, Bellingham, Washington: CRC Press, 2016.
dc.relationG. Buelna Quijada, «Propuesta de diseño y construcción de un sistema de lavado y purificado de gases de un sistema de combustión, en planta piloto; método de absorción-adsorción,» Universidad de Sonora, Hermosillo, México, 1995.
dc.relationN. P. Deshpande, Electronic devices and circuits: principles and applications., New Delhi: McGraw-Hill, 2008.
dc.relationR. E. Thomas, A. J. Rosa y G. J. Toussaint, The Analysis and Design of Linear Circuits, Hoboken: John Wiley & Sons, 2016.
dc.relationA. P. Godse y U. A. Bakshi, Basic Electronics Engineering, Pune: Technical Publications Pune, 2008.
dc.relationR. Dufo-Lopez, J. Krzywanski y J. Singh, Emerging Developments in the Power and Energy Industry, London: Taylor & Francis Group, 2020.
dc.relationMathworks, «Help Center: Simscape/electrical,» 2020. [En línea]. Available: https://www.mathworks.com/help/physmod/sps/powersys/ref/fullbridgemmc.html.
dc.relationMathworks, «Hepl center: Simscape/electrical,» 2020. [En línea]. Available: https://www.mathworks.com/help/physmod/sps/powersys/ref/powergui.html.
dc.relationMercedes-Benz, «Nuestros modelos: Chasis OF 1721,» 2020. [En línea]. Available: https://www.mercedes-benz-bus.com/es_AR/models/of1721.html.
dc.relationJ. A. Pozo Palacios, «Influencia de la disposición del conducto de escape en el índice de contaminación de los buses de transporte masivo de pasajeros de la ciudad de Cuenca,» Universidad Politécnica Salesiana, Cuenca, Ecuador, 2010.
dc.relationANSYS Inc, «Workbench User's Guide,» 2017. [En línea]. Available: http://ecourses.ou.edu/fem/manuals/Workbench_Users_Guide_v18.2.pdf.
dc.relationANSYS Inc., «Meshing user's guide,» 2020. [En línea]. Available: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/wb_msh/msh_book_wb.html.
dc.relationANSYS Inc, «Fluent user's guide,» 2020. [En línea]. Available: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/flu_ug/flu_ug.html.
dc.relationS. Velasco, F. L. Román, A. González y J. A. White, «A computer-assisted experiment for the measurement of the temperature dependence of the speed of sound in air,» Am. J. Phys., vol. 72 (2), pp. 276-279, Febrero 2004.
dc.relationL. Hookyung, C. Sangmin y K. Bonhkeun, «Understanding Coal Gasification and Combustion Modeling in General Purpose CFD Code,» Journal of the Korean Society of Combustion, vol. 15, p. 17, 2010.
dc.relationA. Shaha, Combustion engineering and fuel technology: Optimum utilization of fuels, New Delhi: Oxford and IBH Publishing Company, 1974.
dc.relationSecretaría distrital de Ambiente, «Programa de Filtros de Partículas Diesel para Bogotá - BDPF,» Alcaldia Mayor de Bogotá, Bogotá, 2014.
dc.relationQuality of Urban Air Review Group, «Diesel Vehicle Emissions and Urban Air Quality,» Institute of Public and Environmental Health, Birmingham, 1993.
dc.relationDepartamento Nacional de Planeación, «Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones,» 7 Mayo 2017. [En línea]. Available: https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradaci%C3%B3n-ambiental-en-Colombia-ascienden-a-$20,7-billones-.aspx.
dc.relationRobert Bosch GmbH, Emissions-Control Technology for Diesel Engines: Bosch Technical Instruction, Germany: Bentley Pub, 2005.
dc.relationP. A. Tipler y G. Mosca, Física para la ciencia y la tecnología I, Barcelona: Reverté, 2004.
dc.relationEuropean comission, «on the approximation of the laws of the Member States relating to measures to be taken against air pollution by gases from positive-ignition engines of motor vehicles,» Official Journal of the European Communities, pp. 171-191, 1970.
dc.relationN. Thonglek y T. Kiatsiriroat, «Agglomeration of sub-micron particles by a non-thermal plasma electrostatic precipitator,» Journal of Electrostatics, vol. 72, nº 1, 2013.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleFiltro por precipitación electrostática para la remoción de material particulado en el escape de motores diesel


Este ítem pertenece a la siguiente institución