dc.contributorVera López, Enrique (Director de tesis)
dc.creatorVillate Corredor, José Julián
dc.date.accessioned2021-08-20T17:16:50Z
dc.date.accessioned2022-09-27T14:01:22Z
dc.date.available2021-08-20T17:16:50Z
dc.date.available2022-09-27T14:01:22Z
dc.date.created2021-08-20T17:16:50Z
dc.date.issued2019
dc.identifierVillate Corredor, J. J. (2019). Estudio de resistencia al desgaste y corrosión de recubrimientos de CrSiN sometidos a la acción de un fluido dinámico. (Tesis doctoral). Universidad Pedagógica y Tecnológica de Colombia, Tunja.
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/3696
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3603240
dc.description.abstractSpa: El presente trabajo busca evaluar el comportamiento de recubrimientos de CrSiN depositados vía PVD sobre sustratos de acero API 5CT N80, sometidas a la acción de un fluido dinámico agresivo conformado por material particulado de alta dureza y baja solubilidad (sílice de tamaño de partícula entre 50 y 150 μm) y adición de NaCl, empleando las técnicas de Pin on Disc y Electrodo de Cilindro Rotatorio, con el fin de establecer su respuesta a los fenómenos de desgaste y corrosión, la cual estará soportada, para la última técnica por el análisis hidrodinámico del fluido (velocidad de rotación) y su relación con el comportamiento del material empleado, para ser utilizado como recubrimiento en sistemas de tuberías para instalaciones industriales de transporte de fluidos, buscando nuevas alternativas que permitan aumentar tanto la confiabilidad como la vida útil de estas instalaciones.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad Ingeniería
dc.publisherTunja
dc.publisherDoctorado en Ingeniería y Ciencia de los Materiales
dc.relationAlbella, J. (2003). . Láminas delgadas y recubrimientos preparación, propiedades y aplicaciones.
dc.relationAlegría, J., Ocampo, L., Suarez, F., & Olaya, J. (2012). . Erosion-corrosion wear of Cr/CrN multi-layer coating deposite don AISI-304 stainless Steel using the umbalanced magnetron (UBM) sputtering system. Wear, 149–153.
dc.relationAmsden, A., O’Rourke, P., & Butler, T. (1989). KIVA-2 A computer program for chemically reactive flows with sprays.
dc.relationAnderson, T., & Jackson, R. (1967). A fluid mechanical description of fluidized beds. I & EC Fundam, 527–534.
dc.relationAndersson, B., Andersson, R., Hakansson, L., Mortensen, M., & van Wachem, B. G. M. (2012). Computational fluid dynamics for engineers. Austin, TX: Engineering Education System, 1989. Retrieved from http://www.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&r ecid=A9542450AH
dc.relationAndrade, C., & Feliu, S. (2001). Corrosión y protección metálicas.
dc.relationAPI, 571. (2003). Damage mechanisms affecting fixed equipment inthe refining industry.
dc.relationASM, I. (1992). ASM Metal Handbook Corrosion
dc.relationAste, T., Di Matteo, T., & D’Agliano, E. G. (2002). Stress transmission in granular matter. Journal of Physics Condensed Matter, 14(9), 2391–2402. https://doi.org/10.1088/0953-8984/14/9/328
dc.relationAste, T., Di Matteo, T., & Tordesillas, A. (2007). Granular and complex materials. World Scientific.
dc.relationASTM Standars. (2003). Conducting Potentiodynamic Polarization Resistance Measurements. Astm, 97(Reapproved), 1–4. https://doi.org/10.1520/G0059- 97R09.2
dc.relationShackelford, J., & Güemes, A. (1998). Introducción a la ciencia de materiales para ingenieros.
dc.relationShah, H. N., Jayaganthan, R., & Kaur, D. (2011). Influence of reactive gas and temperature on structural properties of magnetron sputtered CrSiN coatings. Applied Surface Science, 257(13), 5535–5543. https://doi.org/10.1016/j.apsusc.2011.01.030
dc.relationShan, L., Wang, Y., Zhang, Q., Zhang, Q., & Xue, Q. (2016). Tribocorrosion behaviors of PVD CrN coated stainless Steel in seawater. Wear, 97–104.
dc.relationShan, L., Zhang, Y. R., Wang, Y. X., Li, J. L., Jiang, X., & Chen, J. M. (2016). Corrosion and wear behaviors of PVD CrN and CrSiN coatings in seawater. Transactions of Nonferrous Metals Society of China (English Edition), 26(1), 175–184. https://doi.org/10.1016/S1003-6326(16)64104-3
dc.relationShukla, V., Saini, H., Kumar, D., & Gupta, G. (2017). Corrosion studies of nanostructured AIN coating deposite don 23/8N Nitronic Steel by PVD method. Materials Today: Proceedings., 10216–10220.
dc.relationSilverman, D. (2004). The rotating cylinder electrode for examining velocity – sensitive corrosión – a review. Corrosion, 1003–1023.
dc.relationSotelo, G. (1997). Hidráulica General.
dc.relationStack, M. M., James, J. S., & Lu, Q. (2004). Erosion-corrosion of chromium steel in a rotating cylinder electrode system: Some comments on particle size effects. Wear, 256(5), 557–564. https://doi.org/10.1016/S0043-1648(03)00565-9
dc.relationTechnical noted. (2007). Study of Mass-Transport Limited Corrosion Using Pine Rotating Cylinder Electrodes. Corrosion, 003(Sep), 1–6.
dc.relationToro, A., Sinatora, A., Tanaka, D., & Tschiptschin, A. (2001). Corrosion–erosion of nitrogen bearing martensitic stainless steels in seawater–quartz slurry. Wear, 1257–1264.
dc.relationAzzi, M., Benkahoul, M., Szpunar, J. A., Klemberg-Sapieha, J. E., & Martinu, L. (2009). Tribological properties of CrSiN-coated 301 stainless steel under wet and dry conditions. Wear, 267(5–8), 882–889. https://doi.org/10.1016/j.wear.2009.01.027
dc.relationTrautz, M. (1916). Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv-3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1–28.
dc.relationValencia, A. (1998). Transformaciones de fase en metalurgia.
dc.relationVelasco, L. (2001). Producción, caracterización microestructural y estudio de la resistencia a la corrosión de recubrimientos nanoestructurados de NbxSiyNz depositados con el sistema UBM.
dc.relationVeprek, S. (1999). The search for novel, superhard materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2401–2420.
dc.relationVersteeg, H., & Malalasekera, W. (2007). Una introducción a la dinámica de fluidos computacional: el método de volumenn finito. (Pearson, Ed.)
dc.relationViegas, J., Rubesin, M., & Horstman, C. (1985). On the use of wall functions as boundary conditions for two-dimentional separated compressible flows.
dc.relationVillamizar, A. (2014). Aplicación de un modelo turbulento bidimensional para la simulación de flujo a superficie libre en un canal horizontal, 239. Retrieved from http://www.bdigital.unal.edu.co/47755/1/1033710750.2015.pdf
dc.relationWang, M. X., Wang, J., Fan, X. Y., Wu, Z. G., Zhang, G. A., & Yan, P. X. (2007). Structure evolution and mechanical properties enhancement of Al/AlN multilayer. Applied Surface Science, 253(22), 8835–8840. https://doi.org/10.1016/j.apsusc.2007.04.039
dc.relationWang, Q., Zhou, F., Wang, X., Chen, K., Wang, M., Qian, T., & Li, Y. (2011). Comparison of tribological properties of CrN, TiCN and TiAlN coatings sliding against SiC balls in water. Applied Surface Science, 7813–7820
dc.relationWang, S. C., Yan, P., Wang, L., Xue, Q., & Zhang, G. (2008). Structure and mechanical properties of reactive sputtering CrSiN films. Applied Surface Science, 255(8), 4425–4429. https://doi.org/10.1016/j.apsusc.2008.11.036
dc.relationBadzioch, S., & Hawksley, P. (1970). Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Process and Development, 521–530.
dc.relationWilcox, D. (1998). Turbulence Modeling for CFD. Anaheim: DCW Industries.
dc.relationWo, P. C., Munroe, P. R., Li, Z., Jiang, Z. T., Xie, Z. H., Zhou, Z. F., & Li, K. Y. (2012). Factors governing the mechanical behaviour of CrSiN coatings: Combined nanoindentation testing and transmission electron microscopy. Materials Science and Engineering A, 534, 297–308. https://doi.org/10.1016/j.msea.2011.11.072
dc.relationWood, J. (2007). Tribo-corrosion of coatings: a review. Journal of Physics D: Applied Physics, 5502–5521.
dc.relationWu, G., Dai, W., Zheng, H., & Wang, A. (2010). Improving wear resistance and corrosion resistance of AZ31 magnesium alloy by DLC/AlN/Al coating. Surface and Coating Technology, 205(7), 2067–2073.
dc.relationWu, X., Li, J., Chen, J., Li, H., Wang, Y., & Shan, L. (2013). Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater. Surface and Coatings Technology, 226, 40–50. https://doi.org/10.1016/j.surfcoat.2013.03.034
dc.relationXaman, J., & Gijón-Rivera, M. (2016). Dinámica de fluidos copmutacional para ingenieros.
dc.relationXiang-min, X., Hao, Z., Fei-fei, L., Zi-hao, Z., & Shu-wang, D. (2014). The properties of CrSiN coatings of different Si content. Applied Mechanics and Materials. Applied Mechanics and Materials, 4323–4326.
dc.relationYadava, P., Sharmaa, S., & Manoj, B. (2018). Effect of linear velocity on sliding wear behavior of TiCN based cermets. Materials Today: Proceedings., 17342–17349.
dc.relationYamamoto, J., Sato, T., & Takeda, M. (2008). Structural analysis of (Cr1-xSix)N coatings and tribological property in water environment. Surface & Coatimgs Technology, 167–172.
dc.relationYangyang, C., Jun, Z., Aihua, L., Jianxin, D., & Haibing, C. (2011). Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. International Journal of Refractory Metals and Hard Materials, 31, 82–88.
dc.relationBardina, J., Huang, P., & Coakley, T. (1997). Turbulence modeling validation testing and development.
dc.relationZhong, X., Lu, W., Yang, H., Liu, M., Zhang, Y., Liu, H., … Zeng, D. (2019). Oxygen corrosión of N80 steel under laboratory conditions simulating high pressure air injection: Analysis of corrosion products. Journal of Petroleum Science and Engineering, 162–170.
dc.relationZhou, F., Chen, K., Wang, M., Xu, X., Meng, H., Yu, M., & Dai, Z. (2008). Friction and wear properties of CrN coatings sliding against Si3N4 balls in wáter and air. Wear, 1029–1037.
dc.relationZong, G., Luo, Z., Chen, L., & He, C. (2015). Microstructure and indentation toughness of Cr/CrN multilayer coatings by arc ion plating. Transactions of Nonferrous Metals Siciety of China, 811–816.
dc.relationBenkahoul, M., Robin, P., Martinu, L., & Klemberg-Sapieha, J. E. (2009). Tribological properties of duplex Cr-Si-N coatings on SS410 steel. Surface and Coatings Technology, 203(8), 934–940. https://doi.org/10.1016/j.surfcoat.2008.07.036
dc.relationBowen, R. (1976). Theory of mixtures. Academic Press, 127.
dc.relationBradford, S. (2001). Corrosion control.
dc.relationBrank, B., & W.A, W. (2015). A new approach to wall modeling in LES on incompressible flow via function enrichment. Journal of Computational Physics
dc.relationBroomfield, J. (2005). Corrosion of steel in concrete. Understanding Investigation and Repair
dc.relationBudinski, K., & Budinski, M. (2005). Engineering Materials Properties and selection.
dc.relationBurbano de Ercilla, S. (2003). Fisca General.
dc.relationCáceres, A., Olaya, J., & Alfonso, J. (2012). Comportamiento de corrosión-erosión en recubrimientos de NbN depositados mediante Sputtering magnetrón. Revista Chilena de Ingeniería, 220–229.
dc.relationCai, F., Yang, Q., Huang, X., & Wei, R. (2010). Microstructure and corrosion behavior of CrN and CrSiCN coatings. Journal of Materials Engineering and Performance, 19(5), 721–727. https://doi.org/10.1007/s11665-009-9534-3
dc.relationCaliskan, H., Panjan, P., & Paskvale, S. (2014). Monitoring of Wear Characteristics of TiN and TiAlN Coatings at Long Sliding Distances. Tribology Transactions, 496–502.
dc.relationCengel, Y., & Cimbala, J. (2012). Mecánica de fluidos fundamentos y aplicaciones.
dc.relationChang, Y., & Hsiao, C. (2009). High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surface & Coatings Technology, 992–996.
dc.relationChen, H.-Y., & Lu, F.-H. (2006). Oxidation behavior chromium nitride films. Thin Solid Films, 2179–2184.
dc.relationChen, J., Zhang, Q., Li, Q. A., Fu, S. L., & Wang, J. Z. (2014). Corrosion and tribocorrosion behaviors of AISI 316 stainless steel and Ti6Al4V alloys in artificial seawater. Transactions of Nonferrous Metals Society of China (English Edition), 24(4), 1022–1031. https://doi.org/10.1016/S1003-6326(14)63157-5
dc.relationChen, W., Huang, J., & Peng, J. (2015). Characterisation of TiAlN PVD coatings on AZ31 magnesium alloy. Research on Chemical Intermediates, 41(3), 1257– 1266. https://doi.org/10.1007/s11164-013-1270-5
dc.relationCosta, H. L., Junior, M. M. O., & Mello, J. D. B. De. (2017). Effect of debris size on the reciprocating sliding wear of aluminium. Wear, 376–377, 1399–1410. https://doi.org/10.1016/j.wear.2016.10.025
dc.relationCunha, L., Andritschky, M., Pischow, K., & Wang, Z. (1999). Microestructure of CrN coatings produced by PVD techniques. Thin Solid Films, 465–471.
dc.relationDe León, J. (2013). Corrosión inducida por flujo en un acero API X 65 en una solución acuosa NaCl 3% saturada de de CO2.
dc.relationDiaz, S. (2009). Evaluación de la corrosión por una salmuera con CO2 y H2S en un acero al carbono API 5L grado X65 por medio del electrodo de cilindro rotatorio.
dc.relationEmge, A., Karthikeyan, S., Kim, H. J., & Rigney, D. A. (2007). The effect of sliding velocity on the tribological behavior of copper. Wear, 263(1–6 SPEC. ISS.), 614–618. https://doi.org/10.1016/j.wear.2007.01.095
dc.relationEstupiñán Duran, H. A., Elles Macías, V., & Peña Ballesteros, D. Y. (2015). EvaluacIón del daño Por corrosIón del acero aIsI sae 4330 en contacto con un lodo de PerforacIón. Revista Fuentes El Reventón Energético, 13(2), 15–21. https://doi.org/10.18273/revfue.v13n2-2015002
dc.relationFaeth, G. (1986). Spray atomization and combustion.
dc.relationFontes, D., Matheus, S., Almeida, A., Braga, R., Juliani, L., Queiroz, A., … Junqueira, R. (2018). Synergism between mechanical wear and corrosion on tribocorrosion of a titanium alloy in a Ringer solution. Integrative Medicine Research, 8(2), 1593–1600. https://doi.org/10.1016/j.jmrt.2018.11.004
dc.relationFranzini, J., & Finnemore, J. (2001). Fluid Mechanics with Engineering Aplications
dc.relationGabe, D. (1983). The rotating cylinder electrode: a review of development. Journal of Applied Electrochemistry, 3–22.
dc.relationGAMRY. (2010). Basics of Electrochemical Impedance Spectroscopy. Application Note AC, (1), 1–17. https://doi.org/10.1152/ajpregu.00432.2003
dc.relationGe, F., Shao, T., Jia, C., Li, P., & Huang, F. (2017). Tribological behaviors of a magnetron sputtered CrSiN coating under ambient air and wet environments. Surface and Coatings Technology, 332, 304–311. https://doi.org/10.1016/j.surfcoat.2017.05.093
dc.relationGeng, Z., Wang, H., Wang, C., Wang, L., & Zhang, G. (2014). Effect of Si content on the tribological properties of CrSiN films in air and water environments. Tribology International, 79, 140–150. https://doi.org/10.1016/j.triboint.2014.06.002
dc.relationGomez, O. (2017). Eficiencia y dosificación de inhibidor de corrosión en ambientes agresivos con CO2.
dc.relationGutierrez, J., León, L., Mesa, D., & Toro, A. (2004). Evaluación de la resistencia al desgaste abrasivo en recubrimientos duros para aplicaciones en la industria minera. Scientia et Technica, 149–154.
dc.relationHeitz, E. (1996). Mechanistically based prevention strategies of flow-induced corrosion. Electrochimica Acta, 41(4 SPEC. ISS.), 503–509. https://doi.org/10.1016/0013-4686(95)00336-3
dc.relationHong, J. H., Kim, J. G., Yoo, Y. H., Han, J. G., & Lee, H. Y. (2007). Effect of Si addition to CrN coatings on the corrosion resistance of CrN/stainless steel coating/substrate system in a deaerated 3.5 wt.% NaCl solution. Surface and Coatings Technology, 201(24), 9518–9523. https://doi.org/10.1016/j.surfcoat.2007.04.005
dc.relationHuang, L., Zou, C., Xie, W., Peng, F., & Shao, L. (2016). Influence of Si contents on the microstructure, mechanical and tribological properties of Cr-Si-N coatings. Ceramics International, 42(4), 5062–5067. https://doi.org/10.1016/j.ceramint.2015.12.019
dc.relationHuttunen-Saarivirta, E., Kilpi, L., Hakala, T. J., Carpen, L., & Ronkainen, H. (2016). Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution. Tribology International, 95, 358–371. https://doi.org/10.1016/j.triboint.2015.11.046
dc.relationIslam, A., & Farhat, Z. (2017). Erosion - corrosion mechanism and comparison of erosion-corrosion performance of API steels. Wear, 533–541.
dc.relationJavaheri, V., Porter, D., & Kuokkala, V. (2018). Slurry erosion of steel – Review of test, mechanisms and materials. Wear, 248–273.
dc.relationJayatillaka, C. (1969). The influence of Prandtl Number and surface roughness on the resistance of the la minar sublayer to momentum and heat transfer. Prog. Heat Mass Transfer, 193–321.
dc.relationJones, D. (1996). Principles and prevention of corrosión.
dc.relationJung, W. S., Han, J. G., Bae, Y. H., Kim, J. H., Lee, H. Y., & Seo, S. M. (2005). The synthesis of CrSiN film deposited using magnetron sputtering system. Surface and Coatings Technology, 200(1–4), 1026–1030. https://doi.org/10.1016/j.surfcoat.2005.02.006
dc.relationKelly, R., Scully, J., Shoesmith, D., & Buchheit, R. (2003). Electrochemical techniques in corrosión science and engineering
dc.relationKim, G. S., Kim, B. S., & Lee, S. Y. (2005). High-speed wear behaviors of CrSiN coatings for the industrial applications of water hydraulics. Surface and Coatings Technology, 200(5–6), 1814–1818. https://doi.org/10.1016/j.surfcoat.2005.08.059
dc.relationKlapper, H. S., Laverde, D., & Vasquez, C. (2008). Evaluation of the corrosion of UNS G10200 steel in aerated brines under hydrodynamic conditions. Corrosion Science, 50(9), 2718–2723. https://doi.org/10.1016/j.corsci.2008.06.022
dc.relationKuzmin, D., Mierka, O., & Turek, S. (2007). On the implementation of the k - E turbulence model in incompressible flow solvers based on a finite element discretization.
dc.relationLaunder, B. ., & Spalding, D. (1974). The numerical computation if turbulent flows. Computer Methods in Applied Mechanics and Engineering, 269–289
dc.relationLaunder, B., & Sharma, B. (1974). Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131–138
dc.relationLavado, S., & Spalding, D. (1974). El cálculo numerico de flujos turbulentos. Métodos Informáticos n Mecánica Aplicada e Ingeniería, 3, 269–289.
dc.relationLee, S. Y., & Hong, Y. S. (2007). Effect of CrSiN thin film coating on the improvement of the low-speed torque efficiency of a hydraulic piston pump. Surface and Coatings Technology, 202(4–7), 1129–1134. https://doi.org/10.1016/j.surfcoat.2007.07.063
dc.relationLi, S., Lian, Y., Wu, F., Deng, J., & Xing, Y. (2012). Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings. International Journal of Refractory Metals and Hard Materials, 35, 10–16. https://doi.org/10.1016/j.ijrmhm.2012.03.002
dc.relationLi, X., Sosa, M., & Olofsson, U. (2014). A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear, 340–341, 31–40. https://doi.org/10.1016/j.wear.2015.01.032
dc.relationLi, Y., Burstein, G., & Hutchings, I. (1995). Influence of environmental composition and electrochemical potential on the slurry erosion-corrosion of aluminium. Wear, 70–79.
dc.relationLin, J., Wang, B., Ou, Y., Sproul, W. D., Dahan, I., & Moore, J. J. (2013). Structure and properties of CrSiN nanocomposite coatings deposited by hybrid modulated pulsed power and pulsed dc magnetron sputtering. Surface and Coatings Technology, 216, 251–258. https://doi.org/10.1016/j.surfcoat.2012.11.053
dc.relationLiu, C., Bi, Q., & Mattews, A. (2001). EIS comparision on corrosión performance of PVD TiN and CrN coated mild Steel in 0,5NaCl aqueous solution. Corrosion Science, 1953–1961.
dc.relationLópez, D., Sánchez, C., & Toro, A. (2005). Corrosion-erosion behavior of TiN-coated stainless steels in aqueous slurries. Wear, 258(1–4 SPEC. ISS.), 684–692. https://doi.org/10.1016/j.wear.2004.09.015
dc.relationLozano, A. (2015). Apuntes sobre dinámica de fluidos computacional
dc.relationMachuca, J., Peña, D., & Escalante, H. (2010). Evaluation of the synergistic behavior of erosion-corrosion on steel AISI-SAE 1020 in a multiphase flow brineCO<inf>2</inf>-sand by electrochemical techniques | Evaluación del comportamiento sinergístico de la erosión-corrosión sobre un acero AISI-SAE 10. Revista Facultad de Ingenieria, (53), 42–53.
dc.relationMartinez, E., Sanjines, R., Banakh, O., & Lévy, F. (2004). Electrical, optical and mechanical properties of sputtered CrNy and Cr1- xSixN1.02 thin films. Surface & Coatings Technology, 332–336.
dc.relationMattox, D. (2010). Handbook of physical vapor deposition (PVD) processing.
dc.relationMercs, D., Briois, P., Demange, V., Lamy, S., & Coddet, C. (2007). Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetrón sputtering assisted by RF plasmas. Surface & Coatings Technology, 6970–6976.
dc.relationMorales, U. P., Mariño Camargo, Á., & Olaya Flórez, J. J. (2010). Electrochemical Impedance - Interpretation of Typical Diagrams With Equivalent Circuits. Revista DYNA, 77(164), 69–75.
dc.relationMosayebi, M. J., & Hosseini, S. R. (2014). Structural and tribological properties of TiC-DLC coatings deposited by RCAE-PVD at various bias voltages. Surface Engineering, 31(2), 96–102. https://doi.org/10.1179/1743294414y.0000000395
dc.relationNaghibi, S. A., Raeissi, K., & Fathi, M. H. (2014). Corrosion and tribocorrosion behavior of Ti/TiN PVD coating on 316L stainless steel substrate in Ringer’s solution. Materials Chemistry and Physics, 148(3), 614–623. https://doi.org/10.1016/j.matchemphys.2014.08.025
dc.relationNavinsek, B., Panjan, P., & Milosev, I. (1997). Industrial apllications of CrN (PVD) coatings, deposited at high and low temperates. Surface & Coating Technology, 182–191.
dc.relationNavinsek, B., Panjan, P., & Milosev, I. (1999). PVD coatings as an environmentelly clean alternative to electroplating and electroless processes. Surface & Coatings Technology, 476–487.
dc.relationNigro, N., Stori, M., & Zanotti, A. (2015). Numerical aspects of k - E tubulence modeling using a finite element incompressible Navier-Stokes formulation.
dc.relationOlvera-Martínez, M. E., Mendoza-Flores, J., & Genesca, J. (2015). CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors. Journal of Loss Prevention in the Process Industries, 35, 19–28. https://doi.org/10.1016/j.jlp.2015.03.006
dc.relationOwczarek, K., & Blazej, K. (2003). Recommended critical temperatures. Part I. Aliphatic Hydrocarbons. Journal of Physics Chemical, 1411–1427.
dc.relationPaladines, A., Aperador, W., & Sequeda, F. (2010). Evaluación de las propiedades tribológicas y corrosión del sistema CrN/Cr depositados sobre acero AISI 304, 4140, 1075 por la técnica Magnetron Sputtering Reactivo DC. AVANCES Investigación En Ingeniería, 61–70.
dc.relationPancorbo, F. (2010). Corrosión, degradación y envejecimiento de los materiales empleados en la edificación
dc.relationPark, I.-W., Kang, D., Moore, J., Kwon, S., Rha, J., & Kim, K. (2007). Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr– Al–Si–N coatings by a hybrid coating system. Surface & Coatings Technology, 5223–5227
dc.relationPeña, D., Pedraza, S., & Vásquez, C. (2010). Evaluación de la corrosión del acero AISI SAE 1020 en un ambiente multifásico de salmuera CO2-H2S. Ingeniería y Desarrollo, 187–213.
dc.relationPeño D., Ragua N., & Vera, M. (2007). Erosión - corrosión de un acero aisi sae 1020 en un sistema salmuera-CO2 - arena. Scientia et Technica, XIII(35), 213–218.
dc.relationRamirez, J. (2012). Recubrimientos nanoestructurados preparados usando técnicas asistidas por plasma.
dc.relationRayleigh, Lord. (1906). On an instrument for compounding vibrations, with application to the drawing of curve such as might represent white light. Philosophical Magazina, 11–61.
dc.relationRebholz, C., Ziegele, H., Leyland, A., & Mattews, A. (1999). Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering. Surface & Coating Technology, 222–229.
dc.relationResnick, R., Halliday, D., & Krane, K. (2001). Fisica. Compañia Editorial Continental.
dc.relationRey, S. (2008). Evaluación de la corrosión de un acero AISI SAE 1020 en un flujo multifásico salmuera – aceite mineral -CO2 – H2S, por medio de un simulador de flujo.
dc.relationRhie, C., & Chow, W. (1983). Numerical study of the turbulent flow past and airfoil with trailing edge separation. AIAA, 1523–1532.
dc.relationRoberge, P. (1999). Handbook of corrosion.
dc.relationRodriguez, D., Gómez, A., González, J., Ortega, C., & Sequeda, F. (2013). Deposición de recubrimientos TiCrN por medio de magnetrón sputering para aplicaciones en aceros de fabricación de herramientas. Revista Colombiana de Materiales, 67–73.
dc.relationRossi, S., Fedrizzi, L., Leoni, M., Scardi, P., & Massiani, Y. (1999). (Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Wear-corrosion behaviour. Thin Solid Films, 350(1), 161–167. https://doi.org/10.1016/S0040- 6090(99)00235-7
dc.relationRuden, A., Restrepo, E., Paladines, A., & Sequeda, F. (2013). Corrosion resistance of CrN films produced by dc magnetron sputtering. Applied Surface Science, 150–156.
dc.relationSánchez, A. (2009). Evaluación de inhibidores de corrosión en flujos multifásicos en un medio ácido. Universidad Bolivariana de Venezuela.
dc.relationSchaffer, J., Saxena, A., Antolovich, S., Sanders, T., & Warner, S. (1999). The science and desing of engineering materials.
dc.relationSchlichting, H., & Gersten, K. (2006). Grenzschicht-Theorie. Berlin: Springer.
dc.relationSchorr Wiener, M., Olvera-Martínez, M. E., Mendoza-Flores, J., & Genesca, J. (2013). Efecto del flujo turbulento sobre el proceso de corrosión por CO2 y la determinación de la eficiencia de inhibidores corrosión. Corrosión y Preservación de La Infraestructura Industrial, 103–129. https://doi.org/10.3926/oms.149
dc.relationScully, J. (1968). Fundamentos de la corrosión.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsLicencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2019 Universidad Pedagógica y Tecnológica de Colombia
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleEstudio de resistencia al desgaste y corrosión de recubrimientos de CrSiN sometidos a la acción de un fluido dinámico
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución