dc.contributorRiascos Landazuri, Henry
dc.creatorGarzon Ovalle , Juan Diego
dc.date2022-02-18T14:01:49Z
dc.date2022-02-18T14:01:49Z
dc.date2021
dc.date.accessioned2022-09-23T20:59:10Z
dc.date.available2022-09-23T20:59:10Z
dc.identifierUniversidad Tecnológica de Pereira
dc.identifierRepositorio UTP
dc.identifierhttps://repositorio.utp.edu.co/home
dc.identifierhttps://hdl.handle.net/11059/13906
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3523931
dc.descriptionEste trabajo de grado define dentro de su marco teorico la utilización de los materiales, los metodos y mecanismos de intervención. incluye una caracterización de nanomateriales y por utlimo se demuestra el trabajo experimental objeto del estudio. Incluye: imagenes de equipos y figuras de procedimientos.
dc.descriptionEn este proyecto se sintetizaron nano partículas (NPs), mediante el método de Ablación. Laser Pulsado (PLA) las cuales se obtuvieron desde un blanco solido de TiFeO en diferentes ambientes líquidos (Agua Des ionizada, Etanol y Metanol). Así mismo La morfología de las NPs se estudió mediante AFM (Microscopıa de Fuerza Atómica), Con Espectros copia Uv-vis se analizó las propiedades ´ ópticas, Se realizó con la estimación con del valor de la energía de Band Gap usando el método Tauc y con FTIR (Infrarrojos por Transformada de Fourier) se analizó su composición química. Las NPs de TiF e2O4 fueron sintetizadas en Agua Desionizada, Etanol y Metanol, usando un lente convergente de 10 cm de distancia focal, con el fin de condensar en un solo punto la intensidad del láser, que ser ´ a la zona de impacto en el blanco, para la producción de nanopartículas de T iF e2O4, bajo condición de temperatura ambiente (24°C ± 2°C). Se ablacionó con el láser de Neodymium-doped Yttrium aluminium Garnet (Nd:YAG) de la Universidad Tecnológica de Pereira, usando longitud de onda ´ λ= 1064 nm.
dc.descriptionIn this project, nanoparticles (NPs) were synthesized using the Pulsed Laser Ablation (PLA) method, which were obtained from a solid TiFeO target in different liquid environments (Deionized Water, Ethanol and Methanol). . Likewise, the morphology of the NPs was studied by AFM (Atomic Force Microscopy), with Uv-vis spectroscopy the optical properties were analyzed. Estimation of the Band Gap energy value using the Tauc method and its chemical composition was analyzed with FTIR (Fourier Transform Infrared). The T iF e2O4 NPs were synthesized in Deionized Water, Ethanol and Methanol, using a convergent lens with a focal length of 10 cm, in order to condense the laser intensity into a single point, which will be the zone impact on the target, for the production of T iF e2O4 nanoparticles, under a condition of room temperature (24 ° C ± 2 ° C). It was ablated with the Neodymium-doped Yttrium aluminum Garnet laser (Nd: YAG) from the Pereira Technological University, using wavelength = 1064 nm. The study of the chemical composition was carried out by FTIR using the Agilent Cary 630 FTIR Spectrometer equipment, which found compositions in 625 cm -1, in Deionized Water and in a variety of maxima such as 3382, 3282 and 1645 cm − 1 for 7:30 min and 1361, 1615, 1785, and 3230cm − 1 for 10:00 min of irradiation duration, UV-Vis characterization was performed, the results of which indicated a higher production. of NPs with absorption intensity in the UV region, which is characteristic of NPs with composition of T iO2, different absorption maxima, common in bimetallic NPs and surface plasma of the which their location is not clear due to the nature of these. It was carried out using a Meche-rey Nagel Nanocolor UV-Vis II spectrophotometer. Band gap values ??were estimated, whose values ??in deionized water as dispersion medium were close to the reference value mentioned 2.1 eV [9], unlike Ethanol and Methanolse. The morphology was carried out by Atomic Force Microscopy (AFM) using the Lex AFM version 5 C3000 controller, Nanosurf brand.
dc.descriptionPregrado
dc.descriptionIngeniero(a) Físico(a)
dc.descriptionIndice general Indice de figuras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Indice de tablas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Agradecimientos vi Resumen vii 1. Preliminares 10 1.1. Introduccion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 10 1.2. Planteamiento de pregunta o problema de investigacion y su justificaci ´ on´ en terminos de necesidades y pertinencia. . . . . . . . . . . . . . . . . . ´ 11 1.3. Objetivo general y espec´ıfico . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1. Objetivo general . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2. Objetivos espec´ıficos . . . . . . . . . . . . . . . . . . . . . . . . 14 I Teor´ıa General 15 2. Marco Teorico 16 ´ 2.1. Ferrita: Ferrita de Titanio (T iF e2O4) . . . . . . . . . . . . . . . . . . . . 16 2.2. S´ıntesis de nanoestructuras usando el metodo de Ablaci ´ on L ´ aser Pulsado ´ en L´ıquido (PLAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3. Metodo de Ablaci ´ on L ´ aser P ´ ulsado en L ´ ´ıquido . . . . . . . . . . . . . . 20 2.3.1. Mecanismo de ablacion l ´ aser con pulsos en nanosegundos para la ´ produccion de Nanopart ´ ´ıculas Metalicas . . . . . . . . . . . . . . ´ 20 3. Caracterizacion de Nanomateriales 23 ´ 3.1. Espectroscop´ıa Ultravioleta-Visisble Uv-Vis . . . . . . . . . . . . . . . . 23 3.1.1. Espectroscop´ıa infrarroja de transfomada de Fourier . . . . . . . 25 3.1.2. Microscop´ıa de Fuerza Atomica . . . . . . . . . . . . . . . . . . ´ 26 II Trabajo Experimental 27 4. S´ıntesis de Nanopart´ıculas de T iF e2O4 28 4.1. Arreglo Optico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ´ 28 4.2. Mecanismo de la ablacion l ´ aser en medios l ´ ´ıquidos . . . . . . . . . . . . 29 4.3. Equipos Utilizados para la caracterizacion de NPMs sintetizadas . . . . . ´ 30 ii 4.3.1. Uv-Vis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2. FTIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 III Resultados, analisis, discusiones y conclusiones 32 ´ 5. Resultados y Discusiones 33 5.1. Resultados de Caracterizacion de NPs de TiFeO . . . . . . . . . . . . . . ´ 33 5.1.1. Espectro de Absorbancia UV-Vis . . . . . . . . . . . . . . . . . 33 5.1.2. Espectroscop´ıa infrarroja de Transformada de Fourier . . . . . . . 45 5.1.3. Microscop´ıa de Fuerza Atomica (AFM) . . . . . . . . . . . . . . ´ 47 6. Discusion 49 ´ 7. Conclusiones 51 7.1. Conclusiones Uv-Vis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.2. Conclusiones de la Estimacion de Energ ´ ´ıa del Band Gap . . . . . . . . . 52 7.3. Conclusiones FTIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.4. Conclusiones AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Referencias 52
dc.format59 pag.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Tecnológica de Pereira
dc.publisherFacultad de Ingenierías
dc.publisherPereira
dc.publisherIngeniería Física
dc.relationD Chung, T Hogan, J Schindler, L Iordanidis, P Brazis, CR Kannewurf, B Chen, and C Uher. Y.; kanatzidis, mg. Chem. Commun, 1170, 2004.
dc.relationKaren Lizeth Salcedo Rodr´ıguez. Multicapas de oxidos magneticos con diversas aplicaciones a la espintronica. PhD thesis, Universidad Nacional de La Plata, 2017.
dc.relationRene Streubel, Stephan Barcikowski, and Bilal Gokce. Continuous multigram na-noparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Optics letters, 41(7):1486–1489, 2016.
dc.relationEnza Fazio, Bilal Gokce, Alessandro De Giacomo, Moreno Meneghetti, Giuseppe ¨ Compagnini, Matteo Tommasini, Friedrich Waag, Andrea Lucotti, Chiara Giusep pina Zanchi, Paolo Maria Ossi, et al. Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials, 10(11):2317, 2020.
dc.relationAna Menendez-Manjon, Philipp Wagener, and Stephan Barcikowski. Transfer matrix method for efficient ablation by pulsed laser ablation and nanoparticle gene ration in liquids. The Journal of Physical Chemistry C, 115(12):5108–5114, 20
dc.relationAdriana de Jesus Garcıa. Implementacion de metodología para estimacion del módulo de elasticidad del asfalto mediante microscopia de fuerza atomica. 2018.
dc.relationCarlos Andres Perez-Lopez, Jaime Andres Perez-Taborda, Henry Riascos, and Alba Avila. The influence of pulsed laser ablation in liquids parameters on the synthesis of zno nanoparticles. In Journal of Physics: Conference Series, volume 1541, page 012019. IOP Publishing, 2020.
dc.relationJohan Sebastian Duque. Resonancia del plasmon de superficie en nanopartıculas metalicas sintetizadas por ablaci ´ on l ´ aser. In ´ Journal of Physics: conference Series, volume 83. IOP Publishing, 2017.
dc.relationAM Mudarra Navarro, AV Gil Rebaza, KL Salcedo Rodr´ıguez, JJ Melo Quinte ro, CE Rodr´ıguez Torres, M Weissmann, and LA Errico. Structural, electronic, and magnetic properties and hyperfine interactions at the fe sites of the spinel ti fe2o4. ab initio, xanes, and mossbauer study. The Journal of Physical Chemistry C, 123(35):21694–21703, 2019.
dc.relationS Anu Mary Ealia and MP Saravanakumar. A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP Conference Se ries: Materials Science and Engineering, volume 263, page 032019. IOP Publishing, 2017.
dc.relationGiulia Neri, Enza Fazio, Placido Giuseppe Mineo, Angela Scala, and Anna Pi perno. Sers sensing properties of new graphene/gold nanocomposite. Nanomate rials, 9(9):1236, 2019.
dc.relationYaxin Zhang, Shen Qiao, Linlin Sun, Qi Wu Shi, Wanxia Huang, Ling Li, and Zi qiang Yang. Photoinduced active terahertz metamaterials with nanostructured vana dium dioxide film deposited by sol-gel method. Optics express, 22(9):11070–11078, 2014.
dc.relationDvir Yelin, Dan Oron, Stephan Thiberge, Elisha Moses, and Yaron Silberberg. Mul tiphoton plasmon-resonance microscopy. Optics express, 11(12):1385–1391, 2003.
dc.relationAmeer Azam, Arham S Ahmed, M Oves, MS Khan, and Adnan Memic. Size dependent antimicrobial properties of cuo nanoparticles against gram-positive and negative bacterial strains. International journal of nanomedicine, 7:3527, 2012.
dc.relationCharles P Poole and Frank J Owens. Introducción a la nanotecnología. Reverte, 2007.
dc.relationMarie-Christine Daniel and Didier Astruc. Gold nanoparticles: assembly, supramo lecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews, 104(1):293–346, 2004.
dc.relationJun Liu, Xi-Ming Chen, Yu Liu, and Hui-Ning Dong. First principle calculation on electronic and magnetic properties of new half-metal T iF e2O4. Physica Scripta, 2007(T129):144, 2007.
dc.relationA Schult. Effect of pressure on the curie temperature of titanomagnetites [(1- x)· F e3O4−x· T iF e2O4]. Earth and Planetary Science Letters, 10(1):81–86, 1970
dc.relationAdam D McFarland and Richard P Van Duyne. Single silver nanoparticles as realtime optical sensors with zeptomole sensitivity. Nano letters, 3(8):1057–1062, 2003
dc.relationMenghan Wang, Benedetto De Vivo, Wanjun Lu, and Maurizio Muniz-Miranda. Sensitive surfaceenhanced raman scattering (sers) detection of nitroaromatic po llutants in water. Applied spectroscopy, 68(7):784–788, 2014
dc.relationAngela Zoppi, S Trigari, E Giorgetti, M Muniz-Miranda, M Alloisio, A Demartini, G Dellepiane, S Thea, G Dobrikov, and I Timtcheva. Functionalized au/ag nanocages as a novel fluorescence and sers dual probe for sensing. Journal of colloid and interface science, 407:89–94, 2013.
dc.relationRochelle R Arvizo, Sanjib Bhattacharyya, Rachel A Kudgus, Karuna Giri, Resham Bhattacharya, and Priyabrata Mukherjee. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 41(7):2943–2970, 2012
dc.relationBarbara Pergolese, Maurizio Muniz-Miranda, and Adriano Bigotto. Catalytic ac tivity of ag/pd bimetallic nanoparticles immobilized on quartz surfaces. Chemical physics letters, 438(4-6):290–293, 2007.
dc.relationCuiling Li and Yusuke Yamauchi. Facile solution synthesis of ag@ pt core– shell nanoparticles with dendritic pt shells. Physical Chemistry Chemical Physics, 15(10):3490–3496, 2013.
dc.relationHamed Ataee-Esfahani, Masataka Imura, and Yusuke Yamauchi. All-metal mesopo rous nanocolloids: Solution-phase synthesis of core–shell pd@ pt nanoparticles with a designed concave surface. Angewandte Chemie, 125(51):13856–13860, 2013.
dc.relationLiang Wang and Yusuke Yamauchi. Metallic nanocages: synthesis of bimetallic pt– pd hollow nanoparticles with dendritic shells by selective chemical etching. Journal of the American Chemical Society, 135(45):16762–16765, 2013
dc.relationJose Ruben Morones, Jose Luis Elechiguerra, Alejandra Camacho, Katherine Holt, Juan B Kouri, Jose Tapia Ram´ırez, and Miguel Jose Yacaman. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10):2346, 2005.
dc.relationFa Bellissima, Massimo Bonini, Rodorico Giorgi, Piero Baglioni, Gb Barresi, Gb Mastromei, and Bb Perito. Antibacterial activity of silver nanoparticles grafted on stone surface. Environmental Science and Pollution Research, 21(23):13278– 13286, 2014
dc.relationJun Sung Kim, Eunye Kuk, Kyeong Nam Yu, Jong-Ho Kim, Sung Jin Park, Hu Jang Lee, So Hyun Kim, Young Kyung Park, Yong Ho Park, Cheol-Yong Hwang, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Bio logy and Medicine, 3(1):95–101, 2007.
dc.relationVirender K Sharma, Ria A Yngard, and Yekaterina Lin. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in colloid and interface scien ce, 145(1-2):83–96, 2009
dc.relationLiesje Sintubin, Willy Verstraete, and Nico Boon. Biologically produced nano silver: current state and future perspectives. Biotechnology and Bioengineering, 109(10):2422–2436, 2012.
dc.relationMaurizio Muniz-Miranda. Sers investigation on the adsorption and photoreaction of 4-nitroanisole in ag hydrosols. Journal of Raman Spectroscopy, 44(10):1416–1421, 2013.
dc.relationAS Nikolov, NN Nedyalkov, RG Nikov, PA Atanasov, MT Alexandrov, and DB Ka rashanova. Investigation of ag nanoparticles produced by nanosecond pulsed laser ablation in water. Applied Physics A, 109(2):315–322, 2012.
dc.relationHaibo Zeng, Xi-Wen Du, Subhash C Singh, Sergei A Kulinich, Shikuan Yang, Jian ping He, and Weiping Cai. Nanomaterials via laser ablation/irradiation in liquid: a review. Advanced Functional Materials, 22(7):1333–1353, 2012
dc.relationE Giorgetti, P Marsili, M Muniz-Miranda, C Gellini, and Francesco Giammanco. Spectroscopic evidence of positive clusters in ag colloids obtained by laser ablation in aqueous solutions. Applied Physics A, 117(1):327–331, 2014.
dc.relationStephan Barcikowski and Giuseppe Compagnini. Advanced nanoparticle genera tion and excitation by lasers in liquids. Physical Chemistry Chemical Physics, 15(9):3022–3026, 2013.
dc.relationS Shamaila, H Wali, R Sharif, J Nazir, N Zafar, and MS Rafique. Antibacterial effects of laser ablated ni nanoparticles. Applied Physics Letters, 103(15):153701, 2013.
dc.relationKhawlah Salah Khashan, Ghassan Mohammad Sulaiman, Farah Abdul Kareem Ab dul Ameer, and Giuliana Napolitano. Synthesis, characterization and antibacterial activity of colloidal nio nanoparticles. Pakistan journal of pharmaceutical sciences, 29(2), 2016.
dc.relationAA Menazea. Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiation Physics and Chemistry, 168:108616, 2020.
dc.relationNurfina Yudasari, Pradita A Wiguna, Maria M Suliyanti, and Cuk Imawan. An tibacterial activity of zno nanoparticles fabricated using laser ablation in solution technique. In Journal of Physics: Conference Series, volume 1245, page 012035. IOP Publishing, 2019.
dc.relationStefan Alexander Maier. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.
dc.relationWenceslao Gonzalez-Vi ´ nas and H ˜ ector L Mancini. ´ Ciencia de los materiales. Ariel Barcelona, 2003
dc.relationCarlos Luna, Ma del Puerto Morales, Carlos J Serna, and Manuel Vazquez. Multi- ´ domain to single-domain transition for uniform co80ni20 nanoparticles. Nanotech nology, 14(2):268, 2003
dc.relationJ Smit and HPJ Wijn. Ferrites, philips technical library. Eindhoven, The Netherlands, 278, 1959.
dc.relationErnesto Jimenez, Kamal Abderrafi, Rafael Abargues, Jose L Valdes, and Juan P Martinez-Pastor. Laser-ablation-induced synthesis of sio2-capped noble metal na noparticles in a single step. Langmuir, 26(10):7458–7463, 2010.
dc.relationLorenzo Echevarria, Maria Alejandra Ortega, Luis Rodriguez, and Jimmy Castillo. obtencion y caracterizaci ´ on de nanopart ´ ´ıculas coloidales empleando metodos ´ opti- ´ cos. Bistua: Revista de la Facultad de Ciencias Basicas ´ , 6(1):1–9, 2008
dc.relationValery A Svetlichnyi, Anastasiia V Shabalina, Ivan N Lapin, Darya A Goncharova, Dmitry A Velikanov, and Aleksey E Sokolov. Study of iron oxide magnetic nano particles obtained via pulsed laser ablation of iron in air. Applied Surface Science, 462:226–236, 2018
dc.relationSanjaya D Perera, Ruperto G Mariano, Khiem Vu, Nijem Nour, Oliver Seitz, Yves Chabal, and Kenneth J Balkus Jr. Hydrothermal synthesis of graphene-tio2 nanotu be composites with enhanced photocatalytic activity. Acs Catalysis, 2(6):949–956, 2012.
dc.relationYang Fan, Hai-Ting Lu, Jin-Hang Liu, Chun-Peng Yang, Qiang-Shan Jing, Yu-Xia Zhang, Xing-Kun Yang, and Ke-Jing Huang. Hydrothermal preparation and electro chemical sensing properties of tio2–graphene nanocomposite. Colloids and Surfaces B: Biointerfaces, 83(1):78–82, 2011.
dc.relationGiulio Fracasso, Paolo Ghigna, Luca Nodari, Stefano Agnoli, Denis Badocco, Pao lo Pastore, Elena Nicolato, Pasquina Marzola, Dusan Mihajlovi ˇ c, Milan Markovic, ´ et al. Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates. Journal of colloid and interface science, 522:208–216, 2018
dc.rightsManifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 de
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subjectNanoparticulas
dc.subjectAblación
dc.subjectAnalisis espectral
dc.subjectAblación Láser
dc.subjectMicroscopía
dc.subjectTiFe2O4
dc.titleSíntesis y caracterización de nanoparticulas de TiFe2O4 mediante el método de Ablación Láser
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/acceptedVersion


Este ítem pertenece a la siguiente institución