dc.contributorFranco Guzmán, Ediguer Enrique
dc.creatorOrjuela López, César Augusto
dc.date.accessioned2020-08-06T13:41:57Z
dc.date.accessioned2022-09-22T18:37:22Z
dc.date.available2020-08-06T13:41:57Z
dc.date.available2022-09-22T18:37:22Z
dc.date.created2020-08-06T13:41:57Z
dc.date.issued2020-02-28
dc.identifierhttp://red.uao.edu.co//handle/10614/12488
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3455362
dc.description.abstractEste trabajo muestra el diseño, fabricación y caracterización de dos sensores piezoeléctricos tipo anillo concéntrico para la medición de la densidad y la viscosidad de líquidos. La medición de la impedancia eléctrica se realizo en el laboratorio, usando un montaje experimental que excita el sensor con un voltaje sinusoidal y mide la caída de voltaje en el piezoeléctrico y la corriente en una resistencia de carga. Los sensores fueron modelados numéricamente por el método de los elementos finitos (MEF). La curva de impedancia eléctrica obtenida por MEF fue comparada con la curva experimental, mostrando buena concordancia. La simulación numérica permitió ver el patrón de vibración del sensor a determinada frecuencia, lo que proporciona una idea clara del movimiento del sensor y del fluido en la cavidad. Un modelo reportado en la literatura fue usado para obtener la densidad y viscosidad del liquido a partir de la frecuencia de resonancia y el factor de calidad medidos. Fueron testadas muestras de cuatro aceites y agua. Los resultados mostraron que los sensores permiten medir la densidad con buena exactitud, pero no tienen la sensibilidad requerida para medir la viscosidad
dc.description.abstractThis work shows the design, manufacture and characterization of two concentric ring-type piezoelectric sensors for measuring the density and viscosity of liquids. The measurement of the electrical impedance was performed in the laboratory, using an experimental setup that excites the sensor with a sinusoidal voltage and measures the voltage through the piezoelectric material and the current in a load resistor. The sensors were also numerically modeled by finite element method (FEM). The electrical impedance curve obtained by FEM was compared to the experimental curve, showing good agreement. The numerical simulation allowed to figure out the vibration pattern of the sensor at a certain frequency, which provides a clear idea of the sensor and fluid movement in the cavity. A model reported in the literature was used to obtain the density and viscosity of the liquid from the resonance frequency and the quality factor measured. Samples of four oils and water were tested. The results showed that the sensors allow measuring density with good accuracy, but do not have the sensitivity required to measure viscosity
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente
dc.publisherIngeniería Mecánica
dc.publisherDepartamento de Energética y Mecánica
dc.publisherFacultad de Ingeniería
dc.relation[1] T. Voglhuber-Brunnmaier, A. O. Niedermayer, M. Heinisch, A. Abdallah, E. K. Reichel, B. Jakoby, V. Putz, and R. Beigelbeck, “Modeling-free evaluation of resonant liquid sensors for measuring viscosity and density,” in 2015 9th International Conference on Sensing Technology (ICST), Dec 2015, pp. 300–305. [2] M. Heinisch, T. Voglhuber-Brunnmaier, E. Reichel, I. Dufour, and B. Jakoby, “Reduced order models for resonant viscosity and mass density sensors,” Sensors and Actuators A: Physical, vol. 220, no. Supplement C, pp. 76 – 84, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0924424714004014 [3] A. Rabani, V. Pinfield, and R. Challis, “Rate of shear of an ultrasonic oscillating rod viscosity probe,” Ultrasonics, vol. 65, pp. 18 – 22, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0041624X15002267 [4] E. E. Franco, J. C. Adamowski, R. T. Higuti, and F. Buiochi, “Viscosity measurement of newtonian liquids using the complex reflection coefficient,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 10, pp. 2247–2253, 2008. [5] E. E. Franco, J. C. Adamowski, and F. Buiochi, “Ultrasonic viscosity measurement using the shear-wave reflection coefficient with a novel signal processing technique,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, vol. 57, no. 5, pp. 1133–1139, 2010. [6] ——, “Experimental study on the determination of the shear-wave reflection coefficient at the solid-liquid interface,” AIP Conference Proceedings, vol. 1433, no. 1, pp. 503–506, 2012. [7] E. E. Franco and F. Buiochi, “Ultrasonic measurement of viscosity: Signal processing methodologies,” Ultrasonics, vol. 91, pp. 213 – 219, 2019. [8] O. Manfredi, R. S. Mills, and R. S. Dwyer-Joyce, “Ultrasonic rheology used as an assessments of oil degradation,” in Proceedings of the 44th Leeds-Lyon Symposium on Tribology, Lyon, France, 9 2017, p. 1. [9] J. Toledo, T. Manzaneque, V. Ruiz-D´ıez, M. Kucera, G. Pfusterschmied, E. Wistrela, W. Steindl, U. Schmid, and J. S´anchez-Rojas, “Piezoelectric mems resonators for density and viscosity sensing in engine oil with diesel fuel,” in Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, 8 2015, pp. 436–439. [10] K.-T. Wu, M. Kobayashi, Z. Sun, C.-K. Jen, P. Sammut, J. Bird, B. Galeote, and N. Mrad, “Engine oil condition monitoring using high temperature integrated ultrasonic transducers,” International Journal of Prognostics and Health Management, vol. 10, pp. 1–7, 2017. [11] M. D. Brouwer, L. A. Gupta, F. Sadeghi, D. Peroulis, and D. Adams, “High temperature dynamic viscosity sensor for engine oil applications,” Sensors and Actuators A: Physical, vol. 173, no. 1, pp. 102 – 107, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S092442471100625X [12] T. L. Wilson, G. A. Campbell, and R. Mutharasan, “Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors,” Sensors and Actuators A: Physical, vol. 138, no. 1, pp. 44 – 51, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0924424707003317 [13] X. Lu, L. Hou, L. Zhang, Y. Tong, G. Zhao, and Z.-Y. Cheng, “Piezoelectricexcited membrane for liquids viscosity and mass density measurement,” Sensors and Actuators A: Physical, vol. 261, no. Supplement C, pp. 196 – 201, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0924424717303382 [14] X. Lu, Q. Guo, Z. Xu, W. Ren, and Z.-Y. Cheng, “Biosensor platform based on stress-improved piezoelectric membrane,” Sensors and Actuators A: Physical, vol. 179, pp. 32 – 38, 2012. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0924424712001689 [15] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publisher, 1997. [16] K. K. Shung, J. M. Cannata, and Q. F. Zhou, “Piezoelectric materials for high frequency medical imaging applications: A review,” Journal of Electroceramics, vol. 19, no. 1, pp. 141–147, September 2007. [17] B. A. Auld, Acoustic fields and waves in solids. John Wyley & Sons, 1973, vol. 1. [18] E. E. Franco, A. M. Cuervo, and H. M. Barrera, “Desarrollo de un programa por elementos finitos para analizar la respuesta vibratoria de estructuras piezoel ´ ectricas,” in Quinto Simposio Nacional en Mec´anica de Materiales y Estructuras continuas-SMEC 2016, Cali-Colombia, 2015, p. 14. [19] C. A. G. Montealegre, “Desarrollo de un programa de elementos finitos basado en elementos tipo tetraedro para el an´ alisis de dispositivos piezoel ´ ectricos,” Trabajo de grado de Ingenier´ıa Mec´ anica, Universidad Aut ´onoma de Occidente, Cali, Colombia, 2017. [20] H. Tzou and L. Bergman, Dynamics and Control of Distributed Systems. Cambridge, England: Cambridge University Press, 2008. [21] M. A. A. B. Andrade, N. P. A. Alvarez, F. A. Buiochi, C. Negreira, and J. C. Adamowski, “Analysis of 1-3 piezocomposite and homogeneous piezoelectric rings for power ultrasonic transducers,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 31, pp. 312 – 318, 12 2009.
dc.rightshttps://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.sourceinstname:Universidad Autónoma de Occidente
dc.sourcereponame:Repositorio Institucional UAO
dc.subjectIngeniería Mecánica
dc.subjectImpedancia eléctrica
dc.subjectFrecuencia de resonancia
dc.subjectViscosidad
dc.subjectDensidad
dc.subjectVibraciones mecánicas
dc.subjectSensor piezoeléctrico
dc.subjectPiezoelectric sensor
dc.subjectElectric impedance
dc.subjectViscosity
dc.subjectResonance frequency
dc.subjectMechanical vibrations
dc.titleDiseño de un sensor piezoeléctrico del tipo anillos concéntricos para la medición de densidad y viscosidad de líquidos.
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución