dc.contributorMojica Nava, Eduardo Alirio
dc.contributorPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.creatorMartínez Vásquez, David Alejandro
dc.date.accessioned2020-06-17T16:36:35Z
dc.date.available2020-06-17T16:36:35Z
dc.date.created2020-06-17T16:36:35Z
dc.date.issued2019-07-10
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77665
dc.description.abstractEn este trabajo se muestra el desarrollo de un modelo de aprendizaje multi-agente que se basa en conceptos tales como la teoría de la información y la teoría de juegos. En primer lugar, los agentes, por medio de herramientas tales como la máxima entropía o las regresiones Gaussianas obtienen una descripción sobre su ambiente. Posteriormente, a través de la minimización de la información mutua, éstos captan la información suficiente y necesaria para entender su entorno evitando redundancia o elevados niveles de distorsión, y de ésta manera, definen fronteras de racionalidad que les permiten, además de mejorar el proceso de apendizaje, seguir señales relevantes del ambiente o evitarlas si su utilidad no es importante. Finalmente, bajo un esquema de juegos potenciales, se define una función potencial basada en la distorsión que es minimizada para lograr un equilibrio de Nash. El modelo propuesto es implementado en redes de sensores móviles y en el control secundario de voltaje en una micro red, demostrando excelentes resultados en términos de control distribuído.
dc.description.abstractIn this work, we propose a multi-agent learning framework based on the mutual information between the agents and their environment. Initially, each agent, based on its neighborhood information, uses the Gaussian process regression (GPR) to infer the environment behavior. Then, a minimization of the mutual information between an agent and the environment is calculated by means of the rate distortion function (RDF). In this way, a border between misunderstanding and redundancy of the environment information is obtained, which is used as a decision rule by the agents. The calculation of the RDF is conveniently performed through the Blahut-Arimoto algorithm, from which, the most important elements for our model are the Lagrange multiplier s, and the conditional distribution describing the similitude between the agent and the environment. The parameter s plays an important role in the rationality level assumed by the agents in the decision making process. On the other hand, due to its Boltzmann distribution form, the conditional probability distribution establishes a Logit dynamics pattern, used by the agents as a rule for the action selection. Finally, we include a distributed optimization setting by means of the potential games approach, in which the Nash equilibrium convergence is found through a distortion based potential function. The framework, in spite of being mainly implemented in mobile sensor networks, demonstrates applicability in other multi-agent contexts, such as smart grids.
dc.languageeng
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationZ. E. ABRAMS , A. G OEL , AND S. P LOTKIN , Set K-Cover Algorithms for Energy Efficient Monitoring in Wireless Sensor Networks, tech. rep., 2004.
dc.relationX. AI , V. SRINIVASAN , AND C.- K . T HAM , Optimality and Complexity of Pure Nash Equilibria in the Coverage Game, IEEE Journal on Selected Areas in Communications, 26 (2008), pp. 1170–1182.
dc.relationR. B. ALBERT , Topology of evolving networks: Local events and universality, Physical Review Letters, 24 (2000), pp. 5234–5237.
dc.relationT. A LSKAIF, M. GUERRERO ZAPATA , AND B. BELLALTA , Game theory for energy efficiency in Wireless Sensor Networks: Latest trends, Journal of Network and Computer Applications, 54 (2015), pp. 33–61.
dc.relationK. ANAND AND G. BIANCONI, Entropy measures for networks: Toward an information theory of complex topologies, Physical Review E, 80 (2009), p. 045102.
dc.relationL.-M. ANG AND K. P HOOIS ENG, Big Sensor Data Applications in Urban Environments, Big Data Research, 4 (2016), pp. 1–12.
dc.relationE. ANSHELEVICH , A. DASGUPTA , J. KLEINBERG , E. TARDOS , T. WEXLER , AND T. ROUGHGARDEN , The Price of Stability for Network Design with Fair Cost Allocation, in 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, 2004, pp. 295–304.
dc.relationV. AULETTA, D. FERRAIOLI, F. PASQUALE, P. PENNA, AND G. PERSIANO, Convergence to Equilibrium of Logit Dynamics for Strategic Games, Algorithmica, 76 (2016), pp. 110–142.
dc.relationZ. BAO, Y. CAO, L. DING, Z. HAN, AND G. WANG , Dynamics of load entropy during cascading failure propagation in scale-free networks, Physics Letters A, 372 (2008), pp. 5778–5782.
dc.relationP. BAROOAH AND J. HESPANHA, Estimation on graphs from relative measurements, IEEE Control Systems, 27 (2007), pp. 57–74.
dc.relationJ. BARREIRO-GOMEZ, G. OBANDO, AND N. QUIJANO, Distributed Population Dynamics: Optimization and Control Applications, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2016), pp. 1–11.
dc.relationM. BARTHÉLEMY, Spatial networks, Institut de Physique Théorique, (2014).
dc.relationD. P. BERTSEKAS, Nonlinear Programming: 3rd Edition, Athena Scientific, 2016.
dc.relationJ. BINNEY, A. KRAUSE, AND G. S. SUKHATME, Informative path planning for an autonomous underwater vehicle, in 2010 IEEE International Conference on Robotics and Automation, IEEE, May 2010, pp. 4791–4796.
dc.relationR. BLAHUT, Computation of channel capacity and rate-distortion functions, IEEE Transactions on Information Theory, 18 (1972), pp. 460–473.
dc.relationD. BLOEMBERGEN , K. TUYLS , D. HENNES , AND M. KAISERS , Evolutionary dynamics of multi-agent learning: A survey, 2015.
dc.relationL. E. BLUME, The Statistical Mechanics of Strategic Interaction, Games and Economic Behavior, 5 (1993), pp. 387–424.
dc.relationS. BOLOGNANI, R. CARLI, G. CAVRARO, AND S. ZAMPIERI, Distributed reactive power feedback control for voltage regulation and loss minimization, IEEE Transactions on Automatic Control, 60 (2015), pp. 966–981.
dc.relationC. G. CASSANDRAS AND W. L I, Sensor Networks and Cooperative Control, European Journal of Control, 11 (2005), pp. 436–463.
dc.relationM. C. CHANDORKAR, D. M. DIVAN, AND R. ADAPA, Control of parallel connected inverters in standalone ac supply systems, IEEE Transactions on Industry Applications, 29 (1993), pp. 136–143.
dc.relationC.-Y. CHANG, G. CHEN, G.-J. YU, T.-L. WANG, AND T.-C. WANG, TCWTP: Time Constrained Weighted Targets Patrolling Mechanism in Wireless Mobile Sensor Networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45 (2015), pp. 901–914.
dc.relationL. C HEN, S. ARAKAWA, H. KOTO, N. O GINO, H. YOKOTA, AND M. MURATA , An evolvable network design approach with topological diversity, Computer Communications, 76 (2016), pp. 101–110.
dc.relationM. CHEN, S. MAO, Y. LIU, M. CHEN, S. MAO, AND Y. LIU, Big Data: A Survey, Mobile Netw Appl, 19 (2014), pp. 171–209.
dc.relationY. CHENG, X. LI, Z. LI, S. JIANG, AND X. JIANG, Fine-grained air quality monitoring based on gaussian process regression, in Neural Information Processing, C. K. Loo, K. S. Yap, K. W. Wong, A. Teoh, and K. Huang, eds., Cham, 2014, Springer International Publishing, pp. 126–134.
dc.relationT. CLOUQUEUR, V. PHIPATANASUPHORN, P. RAMANATHAN, AND K. K. SALUJA, Sensor Deployment Strategy for Detection of Targets Traversing a Region, Mobile Networks and Applications, 8 (2003), pp. 453–461.
dc.relationJ. CORTES, S. MARTINEZ, T. KARATAS, AND F. BULLO, Coverage Control for Mobile Sensing Networks, IEEE Transactions on Robotics and Automation, 20 (2004), pp. 243–255.
dc.relationT. M. COVER AND J. A. THOMAS, Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing), Wiley-Interscience, New York, NY, USA, 2006.
dc.relationF. F. D. ACEMOGLU, G. COMO AND A. OZDAGLAR, Opinion fluctuations and disagreement in social networks, Mathematics of Operations Research, 38 (2013), pp. 1–27.
dc.relationM. H. D E BADYN, A. CHAPMAN, AND M. MESBAHI, Network entropy: A system theoretic perspective, in Proceedings of the IEEE Conference on Decision and Control, vol. 2016-Febru, Institute of Electrical and Electronics Engineers Inc., 2016, pp. 5512–5517.
dc.relationM. DEHMER, A NOVEL METHOD FOR MEASURING THE STRUCTURAL INFORMATION CONTENT OF NETWORKS, Cybernetics and Systems, 39 (2008), pp. 825–842.
dc.relationL. DEMETRIUS, V. M. GUNDLACH, AND G. OCHS, Complexity and demographic stability in population models., Theoretical population biology, 65 (2004), pp. 211–25.
dc.relationL. DEMETRIUS AND T. MANKE, Robustness and network evolution?an entropic principle, Physica A: Statistical Mechanics and its Applications, 346 (2005), pp. 682–696.
dc.relationC. DESOER, The Optimum Formula for the Gain of a Flow Graph or a Simple Derivation of Coates’ Formula, Proceedings of the IRE, 48 (1960), pp. 883–889.
dc.relationS. DHILLON AND K. CHAKRABARTY, Sensor placement for effective coverage and surveillance in distributed sensor networks, in 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003., vol. 3, IEEE, 2003, pp. 1609–1614.
dc.relationM. C. DONALDSON -MATASCI, C. T. BERGSTROM, AND M. LACHMANN, The fitness value of information., Oikos (Copenhagen, Denmark), 119 (2010), pp. 219–230.
dc.relationDONGBING GU AND HUOSHENG HU, Spatial Gaussian Process Regression With Mobile Sensor Networks, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), pp. 1279–1290.
dc.relationE. ESTRADA, The structure of complex networks: theory and applications, Oxford University Press, 2011.
dc.relationS. GONZÁLEZ -VALENZUELA, M. C HEN, AND V. C. M. LEUNG, Mobility support for health monitoring at home using wearable sensors, IEEE Transactions on Information Technology in Biomedicine, 15 (2011), pp. 539–549.
dc.relationJ. P. GOULD, Risk, stochastic preference, and the value of information, Journal of Economic Theory, 8 (1974), pp. 64–84.
dc.relationC. GROS, Complex and adaptive dynamical systems, A Primer. Springer, (2008).
dc.relationT. GROSS AND H. SAYAMA, Adaptive networks, Springer, 2009.
dc.relationJ. M. GUERRERO, M. CHANDORKAR, T. LEE, AND P. C. L OH, Advanced control architectures for intelligent microgrids—part i: Decentralized and hierarchical control, IEEE Trans. Ind. Electron, 60 (2013), pp. 1254–1262.
dc.relationM. HATA, Empirical formula for propagation loss in land mobile radio services, IEEE Transactions on Vehicular Technology, 29 (1980), pp. 317–325.
dc.relationJ. HE AND A. KOLOVOS, Bayesian maximum entropy approach and its applications: a review, Stochastic Environmental Research and Risk Assessment, (2017), pp. 1–19.
dc.relationM. O. JACKSON, Social and economic networks, Physical Review Letters, 24 (2000), pp. 5234–5237.
dc.relationE. T. JAYNES, Information Theory and Statistical Mechanics, Physical Review, 106 (1957), pp. 620–630.
dc.relationB. J. JULIAN, M. ANGERMANN, M. SCHWAGER, AND D. RUS, Distributed robotic sensor networks: An information-theoretic approach, The International Journal of Robotics Research, 31 (2012), pp. 1134–1154.
dc.relationA. KAHN, J. MARZAT, H. PIET-LAHANIER, AND M. KIEFFER, Global extremum seeking by Kriging with a multi-agent system, IFAC-PapersOnLine, 48 (2015), pp. 526–531.
dc.relationA. B. KAO, N. MILLER, C. TORNEY, A. HARTNETT, AND I. D. COUZIN, Collective learning and optimal consensus decisions in social animal groups., PLoS computational biology, 10 (2014), p. e1003762.
dc.relationA. KRAUSE, A. SINGH, AND C. GUESTRIN, Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies, Journal of Machine Learning Research, 9 (2008), pp. 235–284.
dc.relationS. KUNZ, T. USLÄNDER, AND K. WATSON, A testbed for sensor service networks and the fusion SOS: Towards plug & measure in sensor networks for environmental monitoring with OGC standards, in 18th World IMACS / MODSIM Congress, 2009, pp. 973–979.
dc.relationR. H. LASSETER, Microgrids, in IEEE Power Engineering Society Winter Meeting, vol. 1, 2002, pp. 305–308.
dc.relationN. LI AND J. R. MARDEN, Designing games for distributed optimization, IEEE Journal of Selected Topics in Signal Processing, 7 (2013), pp. 230–242.
dc.relationS. LI, L. D. XU, AND X. WANG, Compressed Sensing Signal and Data Acquisition in Wireless Sensor Networks and Internet of Things, IEEE Transactions on Industrial Informatics, 9 (2013), pp. 2177–2186.
dc.relationW. LI, Mutual information functions versus correlation functions, Journal of Statistical Physics, 60 (1990), pp. 823–837.
dc.relationB. LIU, P. BRASS, O. DOUSSE, P. NAIN, AND D. TOWSLEY, Mobility improves coverage of sensor networks, in Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’05, New York, NY, USA, 2005, ACM, pp. 300–308.
dc.relationB. LIU, O. DOUSSE, P. NAIN, AND D. TOWSLEY, Dynamic Coverage of Mobile Sensor Networks, IEEE Transactions on Parallel and Distributed Systems, 24 (2013), pp. 301–311.
dc.relationJ. A. P. LOPES, C. L. MOREIRA, AND A. G. MADUREIRA, Defining control strategies for microgrids islanded operation, IEEE Transactions on Power Systems, 21 (2006), pp. 916–924.
dc.relationX. MA, H. YU, Y. WANG, AND Y. WANG, Large-scale transportation network congestion evolution prediction using deep learning theory, in PloS one, 2015.
dc.relationJ. MARDEN, G. ARSLAN, AND J. SHAMMA, Cooperative Control and Potential Games, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39 (2009), pp. 1393–1407.
dc.relationJ. R. MARDEN, The role of information in multiagent coordination, in 53rd IEEE Conference on Decision and Control, 2014, pp. 445–450.
dc.relationD. A. MARTÍNEZ AND E. MOJICA-NAVA, Correlation as a measure for fitness in multi-agent learning systems, in 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI), IEEE, Nov 2016, pp. 1–6.
dc.relationD. A. MARTÍNEZ AND E. MOJICA-NAVA, Entropy measures in evolving networks, in Complex Networks: from theory to interdisciplinary applications, July 2016.
dc.relationD. A. MARTÍNEZ AND E. MOJICA-NAVA, Graph transfer function representation to measure network robustness, in Impact and Advances of Automatic Control in Latinamerica, Oct 2016, pp. 172–176.
dc.relationD. A. MARTÍNEZ, E. MOJICA-NAVA, K. WATSON, AND T. USLÄNDER, Multiagent learning framework for environment redundancy identification for mobile sensors in an iot context, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W11 (2018), pp. 33–41.
dc.relationD. A. MARTINEZ, R. RINCON, E. MOJICA-NAVA, AND A. PAVAS, Reactive power sharing in microgrids: An information theoretical approach, in 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), IEEE, Oct 2017, pp. 1–6.
dc.relationD. A. MARTÍNEZ , E. MOJICA-NAVA , A. S. A L -SUMATI , AND S. RIVERA , A distortion-based potential game for secondary voltage control in micro-grids, IEEE Access, (2020), pp. 1–1.
dc.relationJ. M. MC NAMARA AND S. R. X. DALL, Information is a fitness enhancing resource, Oikos, 119 (2010), pp. 231–236.
dc.relationS. MEI, H. LI, J. FAN, X. ZHU, AND C. R. DYER, Inferring air pollution by sniffing social media, in 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), Aug 2014, pp. 534–539.
dc.relationM. MESBAHI AND M. EGERSTEDT, Graph Theoretic Methods in Multiagent Networks, Princeton University Press, stu - student edition ed., 2010.
dc.relationS. M. MOHAMED, H. S. HAMZA, AND I. A. SAROIT, Coverage in mobile wireless sensor networks (M-WSN): A survey, Computer Communications, 110 (2017), pp. 133–150.
dc.relationE. MOJICA-NAVA, C. BARRETO, AND N. QUIJANO, Population games methods for distributed control of microgrids, IEEE Transactions on Smart Grid, 6 (2015), pp. 2586 – 2595.
dc.relationD. MONDERER AND L. S. SHAPLEY, Potential Games, Games and Economic Behavior, 14 (1996), pp. 124–143.
dc.relationK. P. MURPHY, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.
dc.relationM. NEWMAN, Networks: an introduction, Oxford University Press, 2010.
dc.relationL. V. NGUYEN, S. KODAGODA, R. RANASINGHE, AND G. DISSANAYAKE, Information-Driven Adaptive Sampling Strategy for Mobile Robotic Wireless Sensor Network, IEEE Transactions on Control Systems Technology, 24 (2016), pp. 372–379.
dc.relationM. NOWAK, Evolutionary Dynamics, Harvard University Press, 2006.
dc.relationS. OH, Y. XU, AND J. CHOI, Explorative navigation of mobile sensor networks using sparse Gaussian processes, in 49th IEEE Conference on Decision and Control (CDC), IEEE, Dec 2010, pp. 3851–3856.
dc.relationH. OHTSUKI AND M. A. NOWAK, The replicator equation on graphs., Journal of theoretical biology, 243 (2006), pp. 86–97.
dc.relationR. OLFATI, J. A. F AX, AND R. MURRAY, Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95 (2007), pp. 215–233.
dc.relationB. T. ONG, K. SUGIURA, AND K. ZETTSU, Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data, in 2014 IEEE International Conference on Big Data (Big Data), Oct 2014, pp. 760–765.
dc.relationA. PANTOJA AND N. QUIJANO, Distributed optimization using population dynamics with a local replicator equation, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), IEEE, dec 2012, pp. 3790–3795.
dc.relationF. PASSERINI AND S. SEVERINI, The von Neumann entropy of networks, 2008.
dc.relationS. RAHILI, J. LU, W. REN, AND U. M. AL-SAGGAF, Distributed Coverage Control of Mobile Sensor Networks in Unknown Environment Using Game Theory: Algorithms and Experiments, IEEE Transactions on Mobile Computing, 17 (2018), pp. 1303–1313.
dc.relationN. RASHEVSKY, Life, information theory, and topology, The Bulletin of Mathematical Biophysics, 17 (1955), pp. 229–235.
dc.relationC. E. RASMUSSEN AND C. K. I. WILLIAMS, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2005.
dc.relationR.HEGSELMANN AND U.KRAUSE, Opinion dynamics and bounded confidence, Physical Review Letters, 5 (2000).
dc.relationR. RINCÓN, A. PAVAS, AND E. MOJICA-NAVA, Long-term voltage stability analysis and network topology in power systems, in IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2016, pp. 1–6.
dc.relationS. ROGERS AND M. GIROLAMI, A First Course in Machine Learning, Second Edition, Chapman & Hall/CRC, 2nd ed., 2016.
dc.relationW. H. SANDHOLM, Population Games and Evolutionary Dynamics, MIT Press, 2010.
dc.relationA. SCAGLIONE AND S. SERVETTO, On the Interdependence of Routing and Data Compression in Multi-Hop Sensor Networks, Wireless Networks, 11 (2005), pp. 149–160.
dc.relationS. SENDRA, E. GRANELL, J. LLORET, AND J. J. P. C. RODRIGUES, Smart collaborative mobile system for taking care of disabled and elderly people, Mobile Networks and Applications, 19 (2014), pp. 287–302.
dc.relationC. E. SHANNON, A Mathematical Theory of Communication, Bell System Technical Journal, 27 (1948), pp. 379–423.
dc.relationJ. W. SIMPSON-PORCO, F. DÖRFLER, AND F. BULLO, Voltage stabilization in microgrids via quadratic droop control, in IEEE CDC, Florence, Italy, 2013, pp. 7582–7589.
dc.relationJ. W. SIMSON-PORCO, F. DÖRFLER, AND F. BULLO, Synchronization and power sharing for droop-controlled inverters in islanded microgrid, Automatica, 49 (2013), pp. 2603–2611.
dc.relationJ. W. S IMSON-PORCO, F. DÖRFLER, Q. SHAFIEE, J. M. GUERRERO, AND F. BULLO, Secondary frequency and voltage control of islanded microgrids via distributed averaging, IEEE Transactions on Industrial Electronics, 46 (2015), pp. 1–12.
dc.relationJ. W. SIMSON-PORCO, Q. SHAFIEE, F. DÖRFLER, J. C. VASQUEZ, J. M. GUERRERO, AND F. BULLO, Stability, power sharing, & distributed secondary control in droop-controlled microgrids, in IEEE Conf. Smart Grid Comm, Vancouver, BC, Canada, 2013, pp. 672–677.
dc.relationV. S. SOLÉ R. V., Complex Networks, vol. 650 of Lecture Notes in Physics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
dc.relationX. SONG, Q. ZHANG, Y. SEKIMOTO, T. HORANONT, S. UEYAMA, AND R. SHIBASAKI, Intelligent system for human behavior analysis and reasoning following large-scale disasters, IEEE Intelligent Systems, 28 (2013), pp. 35–42.
dc.relationJ. A. STANKOVIC, Research Directions for the Internet of Things, IEEE Internet of Things Journal, 1 (2014), pp. 3–9.
dc.relationT. TATARENKO, Stochastic payoff-based learning in multi-agent systems modeled by means of potential games, in 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, dec 2016, pp. 5298–5303.
dc.relationT. TATARENKO, Game-Theoretic Learning and Distributed Optimization in Memoryless MultiAgent Systems, Springer Publishing Company, Incorporated, 1st ed., 2017.
dc.relationS. F. TAYLOR, N. TISHBY, AND W. BIALEK, Information and fitness, 2007.
dc.relationN. TISHBY, F. C. PEREIRA, AND W. BIALEK, The information bottleneck method, 2000.
dc.relationE. TRUCCO, A note on the information content of graphs, The Bulletin of Mathematical Biophysics, 18 (1956), pp. 129–135.
dc.relationK. TUMER AND D. WOLPERT, A Survey of Collectives, in Collectives and the Design of Complex Systems, Springer New York, New York, NY, 2004, pp. 1–42.
dc.relationA. VISERAS, T. WIEDEMANN, C. MANSS, L. MAGEL, J. MUELLER, D. SHUTIN, AND L. MERINO, Decentralized multi-agent exploration with online-learning of Gaussian processes, in 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, May 2016, pp. 4222–4229.
dc.relationJ. VON NEUMANN AND O. MORGENSTERN, Theory of Games and Economic Behavior, Science Editions, Princeton University Press, 1944.
dc.relationM. VOORNEVELD, Potential games and interactive decisions with multiple criteria, PhD thesis, Tilburg University, 1999.
dc.relationG. WANG, G. CAO, AND T. LA PORTA, Movement-assisted sensor deployment, IEEE Transactions on Mobile Computing, 5 (2006), pp. 640–652.
dc.relationH. WANG, H. E. ROMAN, L. YUAN, Y. HUANG, AND R. WANG, Connectivity, coverage and power consumption in large-scale wireless sensor networks, Computer Networks, 75 (2014), pp. 212–225.
dc.relationX. WANG, H. ZHANG, S. FAN, AND H. GU, Coverage Control of Sensor Networks in IoT Based on RPSO, IEEE Internet of Things Journal, 5 (2018), pp. 3521–3532.
dc.relationJ. WEBB, Game Theory: Decisions, Interaction and Evolution, Springer Undergraduate Mathematics Series, Springer, 2007.
dc.relationD. WHITNEY, Basic network metrics-notes, Notes, (2008).
dc.relationD. H. WOLPERT, Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics, Complex Engineered Systems, 2006 (2006), pp. 262–290.
dc.relationD. H. WOLPERT AND K. TUMER, An introduction to collective intelligence, 1999.
dc.relationW. REN, W. BEARD, AND E. M. ATKINS, Information consensus in multivehicle cooperative control, IEEE Control Syst, Mag, 27 (2007), pp. 71–82.
dc.relationY.-H. XIAO, W.-T. WU, H. WANG, M. XIONG, AND W. WANG, Symmetry-based structure entropy of complex networks, Physica A: Statistical Mechanics and its Applications, 387 (2008), pp. 2611–2619.
dc.relationY. XU AND J. CHOI, Adaptive Sampling for Learning Gaussian Processes Using Mobile Sensor Networks, Sensors, 11 (2011), pp. 3051–3066.
dc.relationE. ZEYDAN, D. KIVANC, C. COMANICIU, AND U. TURELI, Energy-efficient routing for correlated data in wireless sensor networks, Ad Hoc Networks, 10 (2012), pp. 962–975.
dc.relationL. ZHANG, Game Theoretical Algorithm for Coverage Optimization in Wireless Sensor Networks, in World Congress on Engineering 2008 Vol I WCE 2008, 2008, pp. 764–769.
dc.relationY. ZHENG, F. LIU, AND H.-P. HSIEH, U-air: When urban air quality inference meets big data, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, New York, NY, USA, 2013, ACM, pp. 1436–1444.
dc.relationM. ZHU AND S. MARTINEZ, Distributed coverage games for mobile visual sensors (II) : Reaching the set of global optima, in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, IEEE, dec 2009, pp. 175–180.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleInformation theory in multi-agent learning systems
dc.typeOtro


Este ítem pertenece a la siguiente institución