dc.contributorOlaya Florez, Jhon Jairo
dc.contributorAperador Chaparro, William Arnulfo
dc.contributorGrupo de Investigación en Corrosión, Tribologia y Energía
dc.creatorEspaña Peña, Claudia Liliana
dc.date.accessioned2022-03-08T19:19:53Z
dc.date.available2022-03-08T19:19:53Z
dc.date.created2022-03-08T19:19:53Z
dc.date.issued2021-10-15
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81156
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn este trabajo de investigación se depositaron recubrimientos de acero inoxidable con y sin plata en forma de monocapas en atmósfera inerte y reactiva a partir de un blanco de acero inoxidable 316L por medio de la técnica Magnetrón Sputtering desbalanceado. Adicionalmente, se depositaron recubrimientos multicapas, alternando capas depositadas en atmósfera inerte y reactiva. Con el fin de evaluar el efecto que tiene la plata en las propiedades mecánicas y la corrosión de los recubrimientos, el blanco de acero inoxidable fue dopado con 1, 2, 3 y 4 insertos de plata. Los recubrimientos depositados fueron caracterizados química, estructural y mecánicamente, así como también su resistencia a la corrosión en solución de Ringer. Los recubrimientos exhibieron una estructura BCC cuando fueron depositados en atmósfera inerte, una estructura FCC en atmósfera reactiva y los recubrimientos multicapas presentaron ambas estructuras BCC y FCC. La composición química de los recubrimientos fue similar a la presentada por el blanco de acero 316L. El contenido de plata presentó una variación más significativa cuando el blanco fue dopado con 3 y 4 insertos de plata. El máximo valor se presentó en los recubrimientos de acero inoxidable dopados con 4 insertos de plata (13.1%at de Ag). La dureza de los recubrimientos se incrementó con el aumento del contenido de plata hasta alcanzar valores de 13GPa, mientras que la adherencia disminuyó. De igual forma, la resistencia al desgaste de los recubrimientos monocapas disminuyó con el incremento del contenido de plata. En cuanto a los recubrimientos multicapas, la resistencia al desgaste aumentó con el contenido de plata. La mejor respuesta frente a la corrosión se dio en los recubrimientos depositados sin plata, tanto para los recubrimientos monocapas como multicapas. El mejor comportamiento fue obtenido por esta última configuración. De acuerdo con lo anterior, los recubrimientos multicapas sin plata son una buena alternativa para ser empleados como materiales para aplicaciones biomédicas. (Texto tomado de la fuente).
dc.description.abstractIn this research work, stainless steel coatings with and without silver were deposited in the form of monolayers in an inert and reactive atmosphere from a 316L stainless steel target using the unbalanced Magnetron Sputtering technique. Additionally, multilayer coatings were deposited, alternating layers deposited in an inert and reactive atmosphere. In order to evaluate the effect that silver has on the mechanical and corrosion properties of the coatings the stainless steel target was doped with 1, 2, 3 and 4 silver inserts. The deposited coatings were characterized chemically, structurally, and mechanically, as well as their resistance to corrosion was evaluated by Ringer solution. The coatings exhibited a BCC structure when they were deposited in an inert atmosphere, an FCC structure when they were deposited in a reactive atmosphere, and the multilayer coatings exhibited both BCC and FCC structures. The chemical composition of the coatings was similar to 316L steel target. The silver content in the coatings presented a more significant variation when the target was doped with 3 and 4 silver inserts, where the maximum value was presented by the stainless steel coatings doped with 4 silver inserts (13.1% at Ag). The hardness of the coatings increased with the increase of the silver content reaching values up to 13 GPa, while the adhesion decreased, as well as the wear resistance of the monolayer coatings decreased with the increase of the silver content. On the other hand, the wear resistance on the multilayer coatings increased with addition of silver content. The best response to corrosion was presented by the coatings deposited without silver, for both monolayer and multilayer coatings, the behavior presented by this last configuration was the best compared to the other coatings configurations. According to the previous information, silver-free multilayer coatings are a good alternative to be used as materials for biomedical applications.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.publisherDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisherFacultad de Ingeniería
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] F. V. Anghelina, D. N. Ungureanu, V. Bratu, I. N. Popescu, and C. O. Rusanescu, “Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L,” Appl. Surf. Sci., vol. 285, no. PARTA, pp. 65–71, 2013, doi: 10.1016/j.apsusc.2013.06.102.
dc.relation[2] L. Wang et al., “Surface modification of biomedical AISI 316L stainless steel with zirconium carbonitride coatings,” Appl. Surf. Sci., vol. 340, pp. 113–119, Jun. 2015, Accessed: Jun. 05, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S016943321500522X.
dc.relation[3] D. Gopi, S. Ramya, D. Rajeswari, and L. Kavitha, “Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel,” Colloids Surfaces B Biointerfaces, vol. 107, pp. 130–136, 2013, doi: 10.1016/j.colsurfb.2013.01.065.
dc.relation[4] A. P. López, C. P. G. García, P. J. A. Mejía, and M. E. M. Fernández, “Estudio in vitro de la citotoxicidad y genotoxicidad de los productos liberados del acero inoxidable 316L con recubrimientos cerámicos bioactivos,” Iatreia, vol. 20, no. 1, pp. 12–20, 2007, doi: 10.1017/CBO9781107415324.004.
dc.relation[5] D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada, “Corrosion Behavior of Nickel-Free High Nitrogen Austenitic Stainless Steel in Simulated Biological Environments.,” Mater. Trans., vol. 43, no. 12, pp. 3100–3104, 2002, doi: 10.2320/matertrans.43.3100.
dc.relation[6] a Parsapour, M. H. Fathi, M. Salehi, a Saatchi, and M. Mehdikhani, “The Effect of Surface Treatment on Corrosion behavior of Surgical 316L Stainless Steel Implant,” Int. J. Iron Steel Soc. Iran, vol. 28, no. 2, pp. 125–131, 2007.
dc.relation[7] S. Kannan, a. Balamurugan, and S. Rajeswari, “Hydroxyapatite coatings on sulfuric acid treated type 316L SS and its electrochemical behaviour in Ringer’s solution,” Mater. Lett., vol. 57, no. 16–17, pp. 2382–2389, 2003, doi: 10.1016/S0167-577X(02)01239-9.
dc.relation[8] A. Parsapour, S. N. Khorasani, and M. H. Fathi, “Effect of Surface Treatment and Metallic Coating on Corrosion Behavior and Biocompatibility of Surgical 316L Stainless Steel Implant,” J. Mater. Sci. Technol., vol. 28, no. 2, pp. 125–131, 2012, doi: 10.1016/S1005-0302(12)60032-2.
dc.relation[9] A. Bourjot, M. Foos, and C. Frantz, “Basic properties of sputtered 310 stainless steel-nitrogen coatings,” Surf. Coatings Technol., vol. 43–44, no. PART 1, pp. 533–542, 1990, doi: 10.1016/0257-8972(90)90104-K.
dc.relation[10] A. Darbeida, A. Saker, A. Billard, and J. Von Stebut, “Optimization of the surface mechanical strength of AISI 31 6L physically vapour deposited nitrogen-doped coatings on AISI 31 6L substrates,” vol. 60, pp. 434–440, 1993.
dc.relation[11] J. Schneider, C. Rebholz, A. Voevodin, a Leyland, and a Matthews, “Deposition and characterization of nitrogen containing stainless steel coatings prepared by reactive magnetron sputtering,” Vacuum, vol. 47, no. 9, pp. 1077–1080, 1996, doi: 10.1016/0042-207X(96)00143-1.
dc.relation[12] S. R. Kappaganthu and Y. Sun, “Influence of sputter deposition conditions on phase evolution in nitrogen-doped stainless steel films,” Surf. Coatings Technol., vol. 198, no. 1-3 SPEC. ISS., pp. 59–63, 2005, doi: 10.1016/j.surfcoat.2004.10.047.
dc.relation[13] S. R. Kappaganthu and Y. Sun, “Studies of structure and morphology of sputter-deposited stainless steel-nitrogen films,” Appl. Phys. A Mater. Sci. Process., vol. 81, no. 4, pp. 737–744, 2005, doi: 10.1007/s00339-004-3144-6.
dc.relation[14] K. L. Dahm, A. J. Betts, and P. A. Dearnley, “Chemical structure and corrosion behaviour of S phase coatings,” Surf. Eng., vol. 26, no. 4, pp. 271–276, 2010, doi: 10.1179/026708410X12550773057947.
dc.relation[15] Y. Sun and S. R. Kappaganthu, “Effect of Nitrogen Doping on Sliding Wear Behaviour of Stainless Steel Effect of nitrogen doping on sliding wear behaviour of stainless steel coatings,” no. January 2004, 2004, doi: 10.1007/s11249-004-8092-y.
dc.relation[16] F. I. Alresheedi and J. E. Krzanowski, “Structure and morphology of stainless steel coatings sputter-deposited in a nitrogen/argon atmosphere,” Surf. Coatings Technol., vol. 314, pp. 105–112, 2017, doi: 10.1016/j.surfcoat.2016.09.063.
dc.relation[17] J. Baranowska, S. Fryska, J. Przekop, and T. Suszko, “The properties of hard coating composed of S-phase obtained by PVD method,” vol. 33, no. 4, 2009.
dc.relation[18] S. Calderon Velasco, A. Cavaleiro, and S. Carvalho, “Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering,” Prog. Mater. Sci., vol. 84, pp. 158–191, 2016, doi: 10.1016/j.pmatsci.2016.09.005.
dc.relation[19] N. K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, and A. Cavaleiro, “Influence of Ag content on mechanical and tribological behavior of DLC coatings,” Surf. Coatings Technol., vol. 232, pp. 440–446, 2013, doi: 10.1016/j.surfcoat.2013.05.048.
dc.relation[20] A. Taglietti et al., “Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface,” Biomaterials, vol. 35, no. 6, pp. 1779–1788, 2014, doi: 10.1016/j.biomaterials.2013.11.047.
dc.relation[21] P. J. Kelly et al., “Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1606–1610, 2010, doi: 10.1016/j.surfcoat.2010.07.029.
dc.relation[22] J. C. Sánchez-López et al., “Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings,” Surface and Coatings Technology, vol. 206, no. 8–9. pp. 2192–2198, 2012, doi: 10.1016/j.surfcoat.2011.09.059.
dc.relation[23] I. Ferreri, V. Lopes, S. Calderon V., C. J. Tavares, A. Cavaleiro, and S. Carvalho, “Study of the effect of the silver content on the structural and mechanical behavior of Ag-ZrCN coatings for orthopedic prostheses,” Mater. Sci. Eng. C, vol. 42, pp. 782–790, 2014, doi: 10.1016/j.msec.2014.06.007.
dc.relation[24] C. Dang, J. Li, Y. Wang, Y. Yang, Y. Wang, and J. Chen, “Influence of Ag contents on structure and tribological properties of TiSiN-Ag nanocomposite coatings on Ti–6Al–4V,” Appl. Surf. Sci., vol. 394, pp. 613–624, 2017, doi: 10.1016/j.apsusc.2016.10.126.
dc.relation[25] A. M. Echavarría, J. A. Calderón, and G. Gilberto Bejarano, “Characterization of the structure and electrochemical behavior of Ag-TaN nanostructured composite coating for biomedical applications,” Surf. Coatings Technol., vol. 345, no. September 2017, pp. 1–12, 2018, doi: 10.1016/j.surfcoat.2018.04.012.
dc.relation[26] J.R.Davis, “Alloy Digest Sourcebook: Stainless Steels,” Mater. Park. OH ASM Int., 2000.
dc.relation[27] M. Mcguire, “Austenitic Stainless Steels,” Stainl. Steels Des. Eng., pp. 69–78, 2008, doi: http://dx.doi.org/10.1016/B0-08-043152-6/00081-4.
dc.relation[28] R. a. Antunes, a. C. D. Rodas, N. B. Lima, O. Z. Higa, and I. Costa, “Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications,” Surf. Coatings Technol., vol. 205, no. 7, pp. 2074–2081, 2010, doi: 10.1016/j.surfcoat.2010.08.101.
dc.relation[29] T. Schmitz et al., “Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets,” Mater. Sci. Eng. C, vol. 44, pp. 126–131, 2014, doi: 10.1016/j.msec.2014.08.024.
dc.relation[30] J. S. Möhler, W. Sim, M. A. T. Blaskovich, M. A. Cooper, and Z. M. Ziora, “Silver bullets: A new lustre on an old antimicrobial agent,” Biotechnol. Adv., no. 2017, p. #pagerange#, 2018, doi: 10.1016/j.biotechadv.2018.05.004.
dc.relation[31] J. C. Martínez-espinosa, N. Amtanus-chequer, L. Funes-, J. L. González-solís, and P. P. Anda, “Síntesis y aplicación de materiales nanoestructurados para el estudio de muestras biológicas por métodos espectroscópicos,” vol. 7, no. 87, 2012.
dc.relation[32] D. Campoccia, L. Montanaro, and C. R. Arciola, “A review of the biomaterials technologies for infection-resistant surfaces,” Biomaterials, vol. 34, no. 34, pp. 8533–8554, 2013, doi: 10.1016/j.biomaterials.2013.07.089.
dc.relation[33] A. Ávalos, A. Haza, and P. Morales, “Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente,” Rev. Complut. Ciencias Vet., vol. 7, no. 2, pp. 1–23, 2013, doi: 10.5209/rev_RCCV.2013.v7.n2.43408
dc.relation[34] W. R. Fordham et al., “Silver as a Bactericidal Coating for Biomedical Implants,” Surf. Coatings Technol., vol. 253, pp. 52–57, 2014, doi: 10.1016/j.surfcoat.2014.05.013.
dc.relation[35] K. Wasa, I. Kanno, and H. Kotera, Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS: Second Edition. 2012.
dc.relation[36] S. D. E. Materiales, “Corriente Crítica y Mecanismos de Disipación en Películas y Superredes de Superconductores de Alta T~,” 1995.
dc.relation[37] J. M. Albella, Láminas Delgadas y Recubrimientos: Preparación y Propiedades y Aplicaciones. 2003.
dc.relation[38] Z. Liu, G. Wang, and W. Gao, “Properties of 310S stainless steel coatings produced by unbalanced magnetron sputter deposition,” Mater. Charact., vol. 54, no. 4–5, pp. 466–472, 2005, doi: 10.1016/j.matchar.2005.02.001.
dc.relation[39] T. Burakowski and T. Wierzchoń, “Surface engineering of metals : principles, equipment, technologies,” CRC Ser. Mater. Sci. Technol., p. 592 p., 1999.
dc.relation[40] P. M. Martin, Handbook of Deposition Technologies for Films and Coatings. 2010.
dc.relation[41] P. Jurči and I. Dlouhý, “Coating of Cr-V ledeburitic steel with CrN containing a small addition of Ag,” Appl. Surf. Sci., vol. 257, no. 24, pp. 10581–10589, 2011, doi: 10.1016/j.apsusc.2011.07.054.
dc.relation[42] S. I. Shah, G. H. Jaffari, E. Yassitepe, and B. Ali, “Evaporation: Processes, Bulk Microstructures, and Mechanical Properties,” in Handbook of Deposition Technologies for Films and Coatings, 2010.
dc.relation[43] M. Z. Ibrahim, A. A. D. Sarhan, F. Yusuf, and M. Hamdi, “Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article,” Journal of Alloys and Compounds, vol. 714. 2017, doi: 10.1016/j.jallcom.2017.04.231.
dc.relation[44] D. J. Wever, A. G. Veldhuizen, M. M. Sanders, J. M. Schakenraad, and J. R. Van Horn, “Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy,” Biomaterials, vol. 18, no. 16, 1997, doi: 10.1016/S0142-9612(97)00041-0.
dc.relation[45] J. C. Wataha, P. E. Lockwood, and A. Schedle, “Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures,” J. Biomed. Mater. Res., vol. 52, no. 2, 2000, doi: 10.1002/1097-4636(200011)52:2<360::AID-JBM16>3.0.CO;2-B.
dc.relation[46] G. D. López, “Biodeterioration and corrosion of metallic implants and prostheses,” Medicina, vol. 53, no. 3. 1993.
dc.relation[47] M. Díaz, P. Sevilla, A. M. Galán, G. Escolar, E. Engel, and F. J. Gil, “Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316 L stainless steel cardiovascular stents,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 87, no. 2, 2008, doi: 10.1002/jbm.b.31144.
dc.relation[48] S. Virtanen, I. Milošev, E. Gomez-Barrena, R. Trebše, J. Salo, and Y. T. Konttinen, “Special modes of corrosion under physiological and simulated physiological conditions,” Acta Biomaterialia, vol. 4, no. 3. 2008, doi: 10.1016/j.actbio.2007.12.003.
dc.relation[49] S. E. Rodil, “Modificación Superficial De Biomateriales Metálicos,” Rev. Latinoam. Metal. y Mater., vol. 29, no. 2, pp. 67–83, 2009, [Online]. Available: http://www.rlmm.org/ojs/index.php/rlmm/article/view/1.
dc.relation[50] A. M. Kandahari, X. Yang, K. A. Laroche, A. S. Dighe, D. Pan, and Q. Cui, “A review of UHMWPE wear-induced osteolysis: The role for early detection of the immune response,” Bone Research, vol. 4. 2016, doi: 10.1038/boneres.2016.14.
dc.relation[51] M. Roy, G. A. Fielding, H. Beyenal, A. Bandyopadhyay, and S. Bose, “Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating,” ACS Appl. Mater. Interfaces, vol. 4, no. 3, 2012, doi: 10.1021/am201610q.
dc.relation[52] X. Zhang, X. Huang, Y. Ma, N. Lin, A. Fan, and B. Tang, “Bactericidal behavior of Cu-containing stainless steel surfaces,” Appl. Surf. Sci., vol. 258, no. 24, 2012, doi: 10.1016/j.apsusc.2012.06.074.
dc.relation[53] P. S. M. Dunlop, C. P. Sheeran, J. A. Byrne, M. A. S. McMahon, M. A. Boyle, and K. G. McGuigan, “Inactivation of clinically relevant pathogens by photocatalytic coatings,” J. Photochem. Photobiol. A Chem., vol. 216, no. 2–3, 2010, doi: 10.1016/j.jphotochem.2010.07.004.
dc.relation[54] D. D. Kumar and G. S. Kaliaraj, “Multifunctional zirconium nitride / copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications,” J. Mech. Behav. Biomed. Mater., vol. 77, no. September 2017, pp. 106–115, 2018, doi: 10.1016/j.jmbbm.2017.09.007.
dc.relation[55] A. Saker, C. Leroy, H. Michel, and C. Frantz, “Properties of sputtered stainless steel-nitrogen coatings and structural analogy with low temperature plasma nitrided layers of austenitic steels,” Mater. Sci. Eng. A, vol. 140, no. C, pp. 702–708, 1991, doi: 10.1016/0921-5093(91)90500-M.
dc.relation[56] M. J. Godbole, A. J. Pedraza, J. W. Park, and G. Geesey, “The crystal structures of stainless steel films sputter-deposited on austenitic stainless steel substrates,” Scr. Metall. Mater. States), vol. 28, no. 10, 1993.
dc.relation[57] X. Zhang, A. Misra, R. K. Schulze, C. J. Wetteland, H. Wang, and M. Nastasi, “Critical factors that determine face-centered cubic to body-centered cubic phase transformation in sputter-deposited austenitic stainless steel films,” J. Mater. Res., vol. 19, no. 6, pp. 1696–1702, 2004, doi: 10.1557/JMR.2004.0215.
dc.relation[58] X. Zhang, O. Anderoglu, R. G. Hoagland, and a. Misra, “Nanoscale growth twins in sputtered metal films,” Jom, vol. 60, no. 9, pp. 75–78, 2008, doi: 10.1007/s11837-008-0123-y.
dc.relation[59] X. Zhang et al., “Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films,” Appl. Phys. Lett., vol. 84, no. 7, pp. 1096–1098, 2004, doi: 10.1063/1.1647690.
dc.relation[60] X. Zhang et al., “Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning,” Acta Mater., vol. 52, no. 4, pp. 995–1002, 2004, doi: 10.1016/j.actamat.2003.10.033.
dc.relation[61] S. R. Kappaganthu and Y. Sun, “Formation of an MN-type cubic nitride phase in reactively sputtered stainless steel-nitrogen films,” J. Cryst. Growth, vol. 267, no. 1–2, pp. 385–393, 2004, doi: 10.1016/j.jcrysgro.2004.03.066.
dc.relation[62] C. Borri, S. Caporali, F. Borgioli, and E. Galvanetto, “Nitrogen Rich Stainless Steel Coatings Obtained by RF Sputtering Process,” no. Ciwc, p. 6157, 2019, doi: 10.3390/ciwc2019-06157.
dc.relation[63] N. S. Cheruvu, R. Wei, M. R. Govindaraju, and D. W. Gandy, “Microstructure and oxidation resistance of nanocrystalline 304 SS-Al coatings,” Surf. Coatings Technol., vol. 204, no. 6–7, pp. 751–755, 2009, doi: 10.1016/j.surfcoat.2009.09.066.
dc.relation[64] N. S. Cheruvu, R. Wei, and D. W. Gandy, “Influence of thermal exposure on the stability of metastable microstructures of sputter deposited nanocrystalline 304 and 310 stainless steel coatings,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1211–1219, 2010, doi: 10.1016/j.surfcoat.2010.10.035.
dc.relation[65] J. Baranowska and S. Fryska, “Characterisation of mechanical properties of S-phase coatings produced by magnetron sputtering deposition,” Chem. List., vol. 105, no. 17, 2011.
dc.relation[66] J. Baranowska, S. Fryska, and T. Suszko, “The influence of temperature and nitrogen pressure on S-phase coatings deposition by reactive magnetron sputtering,” Vacuum, vol. 90, no. 1, pp. 160–164, 2013, doi: 10.1016/j.vacuum.2012.03.054.
dc.relation[67] S. Fryska and J. Baranowska, “The pressure influence on the properties of S-phase coatings deposited by reactive magnetron sputtering,” Acta Phys. Pol. A, vol. 123, no. 5, pp. 854–857, 2013, doi: 10.12693/APhysPolA.123.854.
dc.relation[68] S. Fryska and J. Baranowska, “Microstructure of reactive magnetron sputtered S-phase coatings with a diffusion sub-layer,” Vacuum, vol. 142, pp. 72–80, 2017, doi: 10.1016/j.vacuum.2017.05.011.
dc.relation[69] P. Gutier, A. Darbeı, A. Billard, C. Frantz, and J. Von Stebut, “Tribological behaviour of N- or O-doped austenitic stainless-steel magnetron sputter-deposited coatings,” vol. 114, pp. 148–155, 1999.
dc.relation[70] K. Dahm and P. Dearnley, “On the nature, properties and wear response of s-phase (nitrogen-alloyed stainless steel) coatings on AISI 316L,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 214, no. 4, pp. 181–198, 2000, doi: 10.1177/146442070021400401.
dc.relation[71] P. A. Dearnley, “Corrosion wear response of S phase coated 316L,” Surf. Eng., vol. 18, no. 6, pp. 429–432, 2002, doi: 10.1179/026708402225006277.
dc.relation[72] P. A. Dearnley and G. Aldrich-Smith, “Corrosion-wear mechanisms of hard coated austenitic 316L stainless steels,” Wear, vol. 256, no. 5, pp. 491–499, 2004, doi: 10.1016/S0043-1648(03)00559-3.
dc.relation[73] D. Formosa, X. Li, R. Sammons, and H. Dong, “Development and characterisation of novel anti-bacterial S-phase based coatings,” Thin Solid Films, vol. 644, no. October, pp. 71–81, 2017, doi: 10.1016/j.tsf.2017.10.054.
dc.relation[74] J. C. Sánchez-López et al., “Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings,” Surf. Coatings Technol., vol. 206, no. 8–9, pp. 2192–2198, 2012, doi: 10.1016/j.surfcoat.2011.09.059.
dc.relation[75] V. S. Dhandapani et al., “Effect of Ag content on the microstructure, tribological and corrosion properties of amorphous carbon coatings on 316L SS,” Surf. Coatings Technol., vol. 240, pp. 128–136, 2014, doi: 10.1016/j.surfcoat.2013.12.025.
dc.relation[76] L. Bai et al., “Nanostructured titanium-silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering,” Appl. Surf. Sci., vol. 355, pp. 32–44, 2015, doi: 10.1016/j.apsusc.2015.07.064.
dc.relation[77] P. Ren et al., “Toughness enhancement and tribochemistry of the Nb-Ag-N fi lms actuated by solute Ag,” Acta Mater., vol. 137, pp. 1–11, 2017, doi: 10.1016/j.actamat.2017.07.034.
dc.relation[78] J. S. Scholtz, J. Stryhalski, J. C. Sagás, A. A. C. Recco, M. Mezaroba, and L. C. Fontana, “Pulsed bias effect on roughness of TiO2:Nb films deposited by grid assisted magnetron sputtering,” Appl. Adhes. Sci., vol. 3, no. 1, pp. 1–6, 2015, doi: 10.1186/s40563-015-0031-7.
dc.relation[79] H. Samir and V. Parra, “Recubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de co­sputtering magnetrón reactivo.,” 2020.
dc.relation[80] L. Velasco Estrada, “Producción, Caracterizacion Microestructural y Estudio de la Resistencia a la Corrosión de Recubrimientos Nanoestructurados de NbxSiyNz Depositados con el Sistema de UBM.,” p. 198, 2011.
dc.relation[81] M. Magda Torres, “Estudio comparativo del proceso de corrosión en recubrimientos cerámicos, metálicos y orgánicos mediante técnicas electroquímicas,” 2010.
dc.relation[82] J. F. M. W. F. S. P. E.’Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy. 2005.
dc.relation[83] S. V Calderon, “Production and Characterization of ZrCN-Ag Coatings Deposited by Mganetron Sputtering,” 2015.
dc.relation[84] ASTM, “Adhesives 1,” Astm, pp. 1–13, 2015, doi: 10.1520/D0907-12A.2.
dc.relation[85] A. Technology, Handbook of Adhesion Technology. 2011.
dc.relation[86] P. Ducheyne, K. E. Healy, D. W. Grainger, D. W. Hutmacher, and C. J. Kirkpatrick, Comprehensive biomaterials. 2011.
dc.relation[87] A. J. Perry, “Scratch adhesion testing of hard coatings,” Thin Solid Films, vol. 107, no. 2, pp. 167–180, 1983, doi: 10.1016/0040-6090(83)90019-6.
dc.relation[88] L. J. O’Donnell, “Tribology Of 316l Austenitic Stainless Steel Carburized At Low Temperature,” Wear, no. January, p. 120, 2010, [Online]. Available: http://etd.ohiolink.edu/send-pdf.cgi/ODonnell Lucas John.pdf?case1251912164.
dc.relation[89] J. A. Salazar-Jiménez, “Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica),” Rev. Tecnol. en Marcha, vol. 28, no. 3, p. 127, 2015, doi: 10.18845/tm.v28i3.2417.
dc.relation[90] G. Ivonne and C. Gonz, “Evaluación de la resistencia a la corrosión de recubrimientos de ZrO,” 2013.
dc.relation[91] R. W. Revie and H. H. Uhlig, CORROSION AND CORROSION CONTROL. 2008.
dc.relation[92] ISO, “ISO 10993-15: Identification and quantification of degradation products from metals and alloys,” 61010-1 © Iec2001, 2019.
dc.relation[93] M. J. Godbole, A. J. Pedraza, L. F. Allard, and G. Geesey, “Characterization of sputter-deposited 316L stainless steel films,” J. Mater. Sci., vol. 27, no. 20, pp. 5585–5590, 1992, doi: 10.1007/BF00541627.
dc.relation[94] S. H. Elder, F. J. DiSalvo, L. Topor, and A. Navrotsky, “Thermodynamics of ternary nitride formation by ammonolysis: application to lithium molybdenum nitride (LiMoN2), sodium tungsten nitride (Na3WN3), and sodium tungsten oxide nitride (Na3WO3N),” Chem. Mater., 1993, doi: 10.1021/cm00034a027.
dc.relation[95] A. Lippitz and T. Hübert, “XPS investigations of chromium nitride thin films,” Surf. Coatings Technol., vol. 200, no. 1-4 SPEC. ISS., pp. 250–253, 2005, doi: 10.1016/j.surfcoat.2005.02.091.
dc.relation[96] S. M. Aouadi, M. Debessai, and P. Filip, “Zirconium nitride/silver nanocomposite structures for biomedical applications,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 22, no. 3, p. 1134, 2004, doi: 10.1116/1.1752905.
dc.relation[97] A. Gies et al., “Effect of silver co-sputtering on V2O5 thin films for lithium microbatteries,” Thin Solid Films, vol. 516, no. 21, pp. 7271–7281, 2008, doi: 10.1016/j.tsf.2007.12.165.
dc.relation[98] A. Siozios et al., “Growth and annealing strategies to control the microstructure of AlN: AG nanocomposite films for plasmonic applications,” Surf. Coatings Technol., 2014, doi: 10.1016/j.surfcoat.2013.11.025.
dc.relation[99] J. A. Thornton, “The microstructure of sputter‐deposited coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., 1986, doi: 10.1116/1.573628.
dc.relation[100] T. Chen, L. Yu, H. Ju, Y. Geng, J. Xu, and S. Koyama, “Influence of Ag content on the microstructure, mechanical, and tribological properties of ZrN-Ag films,” J. Nano Res., vol. 54, pp. 88–97, 2018, doi: 10.4028/www.scientific.net/JNanoR.54.88.
dc.relation[101] Q. W. Ye et al., “Electrochemical behavior of ( Cr , W , Al , Ti , Si ) N multilayer coating on nitrided AISI 316L steel in natural seawater,” vol. 46, no. April, pp. 22404–22418, 2020, doi: 10.1016/j.ceramint.2020.05.323.
dc.relation[102] J. Wang et al., “Detwinning mechanisms for growth twins in face-centered cubic metals,” Acta Mater., vol. 58, no. 6, pp. 2262–2270, Apr. 2010, doi: 10.1016/j.actamat.2009.12.013.
dc.relation[103] M. Calmunger, “Effect of Temperature on Mechanical Response of Austenitic Materials,” no. December, p. 57, 2011.
dc.relation[104] Y. Zhao, I. C. Cheng, M. E. Kassner, and a. M. Hodge, “The effect of nanotwins on the corrosion behavior of copper,” Acta Mater., vol. 67, pp. 181–188, 2014, doi: 10.1016/j.actamat.2013.12.030.
dc.relation[105] P. Uttam, V. Kumar, K. H. Kim, and A. Deep, “Nanotwinning: Generation, properties, and application,” Mater. Des., vol. 192, p. 108752, 2020, doi: 10.1016/j.matdes.2020.108752.
dc.relation[106] N. K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, and A. Cavaleiro, “Influence of Ag content on mechanical and tribological behavior of DLC coatings,” Surf. Coatings Technol., vol. 232, pp. 440–446, 2013, doi: 10.1016/j.surfcoat.2013.05.048.
dc.relation[107] H. L. Huang, Y. Y. Chang, M. C. Lai, C. R. Lin, C. H. Lai, and T. M. Shieh, “Antibacterial TaN-Ag coatings on titanium dental implants,” Surf. Coatings Technol., 2010, doi: 10.1016/j.surfcoat.2010.07.096.
dc.relation[108] P. Basnyat et al., “Mechanical and tribological properties of CrAlN-Ag self-lubricating films,” Surf. Coatings Technol., 2007, doi: 10.1016/j.surfcoat.2007.05.088.
dc.relation[109] S. M. Aouadi et al., “Tribological investigation of zirconium nitride/silver nanocomposite structures,” Surf. Coatings Technol., vol. 201, no. 1, pp. 418–422, 2006, doi: https://doi.org/10.1016/j.surfcoat.2005.11.135.
dc.relation[110] S. Xu et al., “Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties,” Surf. Coatings Technol., vol. 238, 2014, doi: 10.1016/j.surfcoat.2013.10.074.
dc.relation[111] W. C. Lan, S. F. Ou, M. H. Lin, K. L. Ou, and M. Y. Tsai, “Development of silver-containing diamond-like carbon for biomedical applications. Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms,” Ceram. Int., vol. 39, no. 4, 2013, doi: 10.1016/j.ceramint.2012.10.264.
dc.relation[112] H. L. Huang, Y. Y. Chang, J. C. Weng, Y. C. Chen, C. H. Lai, and T. M. Shieh, “Anti-bacterial performance of Zirconia coatings on Titanium implants,” in Thin Solid Films, 2013, vol. 528, doi: 10.1016/j.tsf.2012.07.143.
dc.relation[113] A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour,” Wear, vol. 246, no. 1–2, pp. 1–11, 2000, doi: 10.1016/S0043-1648(00)00488-9.
dc.relation[114] J. Buršik, V. Buršiková, P. Souček, L. Zábranský, and P. Vašina, “Characterization of Ta-B-C nanostructured hard coatings,” in IOP Conference Series: Materials Science and Engineering, 2017, vol. 175, no. 1, doi: 10.1088/1757-899X/175/1/012020.
dc.relation[115] P. Ren et al., “Toughness enhancement and tribochemistry of the Nb-Ag-N films actuated by solute Ag,” Acta Mater., vol. 137, pp. 1–11, 2017, doi: 10.1016/j.actamat.2017.07.034.
dc.relation[116] D. W. Hoeppner, Structural Integrity Considerations in Engineering Design. WORLD SCIENTIFIC (EUROPE), 2011.
dc.relation[117] K. Holmberg and A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering. Elsevier Science, 2009.
dc.relation[118] B. Alemón, M. Flores, W. Ramírez, J. C. Huegel, and E. Broitman, “Tribocorrosion behavior and ions release of CoCrMo alloy coated with a TiAlVCN/CNx multilayer in simulated body fluid plus bovine serum albumin,” Tribol. Int., vol. 81, no. 81, pp. 159–168, 2015, doi: 10.1016/j.triboint.2014.08.011.
dc.relation[119] E. Contreras, Y. Galindez, M. A. Rodas, G. Bejarano, and M. A. Gómez, “CrVN/TiN nanoscale multilayer coatings deposited by DC unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 332, no. July, pp. 214–222, 2017, doi: 10.1016/j.surfcoat.2017.07.086.
dc.relation[120] F. Pöhl, C. Hardes, and W. Theisen, “Scratch behavior of soft metallic materials,” AIMS Mater. Sci., vol. 3, no. 2, pp. 390–403, 2016, doi: 10.3934/matersci.2016.2.390.
dc.relation[121] A. P. Tschiptschin, C. M. Garzon, and D. M. Lopez, “Scratch Resistance of High Nitrogen Austenitic Stainless Steels,” Tribol. Interface Eng. Ser., vol. 51, pp. 280–293, 2006, doi: 10.1016/S0167-8922(06)80051-9.
dc.relation[122] Organization Technical Barriers to Trade (TBT) Committee., “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of,” ASTM Int., vol. 05, no. Reapproved 2015, pp. 1–29, 2015, doi: 10.1520/C1624-05R15.Scope.
dc.relation[123] S. Fryska, J. Słowik, and J. Baranowska, “Structure and mechanical properties of chromium nitride/S-phase composite coatings deposited on 304 stainless steel,” Thin Solid Films, vol. 676. pp. 144–150, 2019, doi: 10.1016/j.tsf.2019.01.046
dc.relation[124] S. J. Bull, “Failure mode maps in the thin film scratch adhesion test,” Tribol. Int., vol. 30, no. 7, pp. 491–498, 1997, doi: 10.1016/S0301-679X(97)00012-1.
dc.relation[125] S. Kuiry, “Advanced Scratch Testing for Evaluation of Coatings,” Bruker, pp. 1–36, 2012.
dc.relation[126] J. L. Mo and M. H. Zhu, “Tribological oxidation behaviour of PVD hard coatings,” Tribol. Int., vol. 42, no. 11–12, pp. 1758–1764, 2009, doi: 10.1016/j.triboint.2009.04.026.
dc.relation[127] X. Yu, Y. Qin, C. B. Wang, Y. Q. Yang, and X. C. Ma, “Effects of nanocrystalline silver incorporation on sliding tribological properties of Ag-containing diamond-like carbon films in multi-ion beam assisted deposition,” Vacuum, vol. 89, pp. 82–85, 2013, doi: 10.1016/j.vacuum.2011.11.007.
dc.relation[128] H. Ju et al., “The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN-Ag films,” Vacuum, 2018, doi: 10.1016/j.vacuum.2017.10.029.
dc.relation[129] F. Wu, L. Yu, H. Ju, I. Asempah, and J. Xu, “Structural, mechanical and tribological properties of NbCN-Ag nanocomposite films deposited by reactive magnetron sputtering,” Coatings, vol. 8, no. 2, 2018, doi: 10.3390/coatings8020050.
dc.relation[130] Albano Cavaleiro and J. T. de Hosson, Nanostructured Coatings. 2006.
dc.relation[131] A. Gilewicz and B. Warcholinski, “Tribological properties of CrCN/CrN multilayer coatings,” Tribol. Int., vol. 80, pp. 34–40, 2014, doi: 10.1016/j.triboint.2014.06.012.
dc.relation[132] G. Rasool and M. M. Stack, “Wear maps for TiC composite based coatings deposited on 303 stainless steel,” Tribol. Int., vol. 74, pp. 93–102, 2014, doi: 10.1016/j.triboint.2014.02.002.
dc.relation[133] D. Con, J. Manuel, and G. Bernal, “DIAMOND LIKE CARBON DIAMANTE Y CIRCONIA,” pp. 1–136, 2019.
dc.relation[134] M. H. Fathi, M. Salehi, a. Saatchi, V. Mortazavi, and S. B. Moosavi, “In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants,” Dent. Mater., vol. 19, no. 3, pp. 188–198, 2003, doi: 10.1016/S0109-5641(02)00029-5.
dc.relation[135] A. Ruden, “Análisis estructural, superficial y tribológico de recubrimientos de nitruro de cromo (CrN) sintetizado por magnetrón sputtering reactivo DC,” 2011.
dc.relation[136] W. Ye, Y. Li, and F. Wang, “The improvement of the corrosion resistance of 309 stainless steel in the transpassive region by nano-crystallization,” Electrochim. Acta, vol. 54, no. 4, 2009, doi: 10.1016/j.electacta.2008.08.073.
dc.relation[137] F. L. A. Vega, “Sintetizar y caracterizar de la resistencia a la corrosión de recubrimientos cerámicos de (SiO2-TiO2-ZrO2-Bi2O3) producidos mediante la técnica sol-gel y depositados sobre las aleaciones de acero inoxidable AISI 316L y de titanio Ti6Al4V.,” Prog. Phys. Geogr., vol. 14, no. 7, p. 450, 2017, doi: 10.1177/0309133309346882.
dc.relation[138] C. Pan, L. Liu, Y. Li, and F. Wang, “Pitting corrosion of 304ss nanocrystalline thin film,” Corros. Sci., vol. 73, 2013, doi: 10.1016/j.corsci.2013.03.022.
dc.relation[139] Y. S. Song, J. H. Lee, K. H. Lee, and D. Y. Lee, “Corrosion properties of N-doped austenitic stainless steel films prepared by IBAD,” Surf. Coatings Technol., vol. 195, no. 2–3, pp. 227–233, 2005, doi: 10.1016/j.surfcoat.2004.06.024.
dc.relation[140] S. Calderon Velasco, V. Lopez, C. F. Almeida Alves, A. Cavaleiro, and S. Carvalho, “Structural and electrochemical characterization of Zr-C-N-Ag coatings deposited by DC dual magnetron sputtering,” Corros. Sci., vol. 80, 2014, doi: 10.1016/j.corsci.2013.11.036.
dc.relation[141] M. M. AMADO, “Resistencia a la corrosión y al desgaste de recubrimientos nanoestructurados de Zirconia (ZrO2 ) – Plata (Ag) y/o Alúmina (Al2O3 ) obtenidos con técnica de ‘Sputtering’ reactivo con magnetrón desbalanceado,” 2019.
dc.relation[142] R. A. Antunes, A. C. D. Rodas, N. B. Lima, O. Z. Higa, and I. Costa, “Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316 L austenitic stainless steel for orthopedic applications,” Surf. Coat. Technol., vol. 205, no. 7, pp. 2074–2081, 2010, doi: 10.1016/j.surfcoat.2010.08.101.
dc.relation[143] S. E. Rodil, B. S. Valdez, and I. G. Fuente, “Corrosion behaviour of TaN thin PVD films on steels,” no. June, 2006, doi: 10.1179/174327806X107941.
dc.relation[144] J. L. V. Gutiérrez, “Empleo de la técnica de espectroscopía de impedancias electroquímicas para la caracterización de biomateriales. Aplicación a una aleación biomédica de Co-Cr-Mo,” 2007.
dc.relation[145] H. Alejandro and Macías, “Ti-W-Si-N depositados mediante la Recubrimientos nanoestructurados de Ti-W-Si-N depositados mediante la técnica de co-sputtering magnetrón reactivo,” 2020.
dc.relation[146] K. P. Premkumar, N. Duraipandy, M. Syamala, and N. Rajendran, “Antibacterial effects , biocompatibility and electrochemical behavior of zinc incorporated niobium oxide coating on 316L SS for biomedical applications,” Appl. Surf. Sci., vol. 427, pp. 1166–1181, 2018, doi: 10.1016/j.apsusc.2017.08.221.
dc.relation[147] F. Heakal, O. S. Shehata, and N. Tantawy, “Integrity of Metallic Medical Implants in Physiological Solutions,” no. April, 2014.
dc.relation[148] G. Rondelli, P. Torricelli, M. Fini, and R. Giardino, “In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications,” vol. 26, pp. 739–744, 2005, doi: 10.1016/j.biomaterials.2004.03.012.
dc.relation[149] E. Martin and O. Savadogo, “Electrochemical characterization of anodic biofilm development in a microbial fuel cell,” no. May, 2013, doi: 10.1007/s10800-013-0537-2.
dc.relation[150] M. Danişman, “The corrosion behavior of nanocrystalline nickel based thin films,” Mater. Chem. Phys., vol. 171, pp. 276–280, 2016, doi: 10.1016/j.matchemphys.2016.01.018.
dc.relation[151] K. V. Akpanyung and R. T. Loto, “Pitting corrosion evaluation: A review,” J. Phys. Conf. Ser., vol. 1378, no. 2, 2019, doi: 10.1088/1742-6596/1378/2/022088.
dc.relation[152] J. Buhagiar and H. Dong, “Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel,” J. Mater. Sci. Mater. Med., vol. 23, no. 2, pp. 271–281, 2012, doi: 10.1007/s10856-011-4516-z.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleResistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución