dc.contributorGómez Giraldo, Evelio Andrés
dc.creatorCórdoba Yepes, Stephany
dc.date.accessioned2021-10-13T16:00:10Z
dc.date.accessioned2022-09-21T15:50:01Z
dc.date.available2021-10-13T16:00:10Z
dc.date.available2022-09-21T15:50:01Z
dc.date.created2021-10-13T16:00:10Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80536
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3385825
dc.description.abstractLos procesos de sedimentación limitan la vida útil de los embalses, esto a su vez representa una amenaza para la sostenibilidad de la energía hidroeléctrica, que representa el 70 % de la capacidad instalada en Colombia. En esta tesis se estudió la dinámica espacio temporal de la morfología del lecho y de los principales procesos de transporte de sedimentos dentro del embalse tropical Porce II, ubicado en el departamento de Antioquia, Colombia. Para esto se calibró y validó el modelo hidro-morfodinámico bidimensional Delft3D-2D a partir de información histórica hidrosedimentológica y de niveles de operación de la central. A partir del modelo se analizaron alternativas para la adaptación y remoción de sedimentos dentro del embalse. La sedimentación en Porce II se caracteriza por un delta de depositación avanzando longitudinalmente y por unas barras/diques laterales que generan una represión del flujo en los brazos de afluentes secundarios, estas características fueron bien representadas por el modelo bidimensional. Dentro del proceso de calibración se destaca el uso del factor de aceleración morfológica, comúnmente usado para reducir el tiempo de computo de simulaciones morfodinámicas de largo plazo en cuerpos de agua con comportamientos cíclicos definidos. En este trabajo se observó una buena representación al aplicarlo a escenarios donde las condiciones de frontera no son periódicas, siempre que se seleccione adecuadamente la escala temporal. Además, se encontró relevancia en la definición de parámetros asociados al flujo turbulento y a la rugosidad del lecho en la simulación de cambios batimétricos. Los resultados de la modelación evidenciaron la influencia del descenso de niveles, durante la operación de la central, para mantener la comunicación con los brazos de afluentes secundarios. Además, sugirieron mayor efectividad en alternativas de remoción cuando la evacuación de sedimentos se da en cercanías al delta de depositación. (Texto tomado de la fuente)
dc.description.abstractThe sedimentation process reduces reservoir lifespan and represents a threat to the sustainability of hydropower, which represents 70% of the installed capacity in Colombia. In this thesis, morphological spatio-temporal dynamics of bed and principal transport processes of sediments inside the tropical reservoir Porce II in Antioquia, Colombia, was studied. For this purpose, the two-dimensional hydro-morphodynamic model Delft3D-2D was calibrated and validated based on historical hydro-sedimentological information and hydroelectric operating levels. Also, adaptation and removal sediment reservoir strategies were analyzed. The sedimentation process in Porce II is characterized by a delta, which advances in a longitudinal way and by lateral barriers, that generates flow repression on the secondary affluents. The proposed model configuration has a proper representation of those characteristics. A morphological acceleration factor was included in the calibration process, commonly used to reduce the computational requirements for long-term morphodynamic simulations in defined cyclical behavior of water bodies. Here it is demonstrated that this factor could be used in simulations whit non-periodical boundary conditions, holding the model accuracy as long as the time scale is selected correctly. In addition, the selected parameters related to turbulent fluxes and the reservoir bottom roughness play an essential role in improving the model skill. The presented results show the influence of the reservoir levels to keep the communication with the secondary affluents. Besides, the results suggest greater effectiveness in removal alternatives when sediment evacuation occurs near the delta.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAcolgen (2021). Capacidad Instalada en Colombia.
dc.relationAguirre Iñiguez, D. V., Bui, M. D., Giehl, S., Reisenbüchler, M., & Rutschmann, P. (2019). Development of a hydro-morphodynamic model for sediment management in the rosenheim reservoir. In XXVIth TELEMAC-MASCARET User Conference, 15th to 17th October 2019, Toulouse.
dc.relationAndersen, T. J., Fredsoe, J., & Pejrup, M. (2007). In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV). Estuarine, Coastal and Shelf Science, 75 (3).
dc.relationAnnandale, G. W., Morris, G. L., & Karki, P. (2016). Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower. The World Bank.
dc.relationAQUAVEO (2021). SRH Model. https://www.aquaveo.com/software/sms-srh.
dc.relationBagnold, R. A. (1973). The nature of saltation and of 'bed-load' transport in water. PROC. ROY. SOC. LONDON, SERIES A, 332 (1591 (1973)).
dc.relationBengtsson, L., Herschy, R., & Fairbridge, R. (2012). Encyclopedia of Lakes and Reservoirs.
dc.relationBetancur Pérez, G. (2013). Metodología para la Selección de Modelos Hidrodinámicos Tridimensionales.
dc.relationBlanckaert, K., Glasson, L., Jagers, H. R. A., & Slo_, C. (2003). Quasi-3D simulation of flow in sharp open-channel bends with horizontal and developed bed topography. In RCEM, (pp. 652-663).
dc.relationBrown, C. B. (1944). Discussion of Sedimentation in Reservoirs. In Proceedings of the American Society of Civil Engineers.
dc.relationBrune, G. M. (1953). Trap efficiency of reservoirs. Eos, Transactions American Geophysical Union, 34 (3).
dc.relationChow, V. T. (1959). Open-channel hydraulics. McGraw-Hill civil engineering series.
dc.relationChurchill, M. (1947). Discussion of “Analysis and Use of Reservoir Sedimentation Data". In Proceedings of the Federal Inter-Agency Sedimentation Conference.
dc.relationCrespo, P. D., Mosselman, E., Giardino, A., Becker, A., Ottevanger, W., Nabi, M., & Arias- Hidalgo, M. (2019). Sediment budget analysis of the Guayas River using a process-based model. Hydrology and Earth System Sciences, 23 (6).
dc.relationDebnath, K., Nikora, V., Aberle, J., Westrich, B., & Muste, M. (2007). Erosion of Cohesive Sediments: Resuspension, Bed Load, and Erosion Patterns from Field Experiments.
dc.relationJournal of Hydraulic Engineering, 133 (5).
dc.relationDeltares (2013a). Delft3D-FLOW User Manual.
dc.relationDeltares (2013a). Delft3D-FLOW User Manual.
dc.relationDeltares (2013c). Delft3D-RGFGRID User Manual.
dc.relationDHI (2021). MIKE 21/3. https://www.mikepoweredbydhi.com/products/mike-21-3.
dc.relationEinstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows. Number 1026. US Government Printing Office.
dc.relationEPM (2003). Batimetría del Embalse Porce II, Año 2002. Technical report.
dc.relationEPM (2003). Batimetría del Embalse Porce II, Año 2002. Technical report.
dc.relationEPM (2016). Batimetría del Embalse Porce II, Año 2015. Technical report.
dc.relationEPM (2020). Diagnóstico de la sedimentación en embalses de EPM. Technical report, Empresas Públicas de Medellín.
dc.relationGarcía, M. H. (2007). ASCE manual of practice 110-sedimentation engineering: Processes, measurements, modeling, and practice. In Examining the Confluence of Environmental and Water Concerns - Proceedings of the World Environmental and Water Resources Congress 2006.
dc.relationGarcía Sanchez, J. (2002). Sedimentación en embalses. In Manual de Ingeniería de Ríos. México.
dc.relationHarris, T. W. (2015). Critical shear stress for erosion of fine and coarse-grained sediments in georgia.
dc.relationHerrling, G. & Winter, C. (2014). Morphological and sedimentological response of a mixedenergy barrier island tidal inlet to storm and fair-weather conditions. Earth Surface Dynamics, 2 (1).
dc.relationHerrling, G. & Winter, C. (2017). Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system. Geo-Marine Letters, 37 (2).
dc.relationIBER (2021). IBER. https://www.iberaula.es/53/iber-model/modules.
dc.relationJi, Z.-G. (2008). Hydrodynamics and Water Quality. Hoboken, NJ, USA: John Wiley & Sons, Inc.
dc.relationKrone, R. B. (1999). Effects of Bed Structure on Erosion of Cohesive Sediments. Journal of Hydraulic Engineering, 125 (12).
dc.relationLajczak, A. (1996). Modelling the long-term course of non-flushed reservoir sedimentation and estimating the life of dams. Earth surface processes and landforms, 21 (12), 1091-1107.
dc.relationLargo, D. (2011). Caracterización Espacio - Temporal De la Estructura Térmica del Embalse Porce II. PhD thesis, Universidad Nacional de Colombia.
dc.relationLauer, J. W., Viparelli, E., & Piégay, H. (2016). Morphodynamics and sediment tracers in 1-D (MAST-1D): 1-D sediment transport that includes exchange with an off-channel sediment reservoir. Advances in Water Resources, 93.
dc.relationLee, S.-C. & Mehta, A. J. (1994). Cohesive sediment erosion. Technical report, FLORIDA UNIV GAINESVILLE DEPT OF COASTAL AND OCEANOGRAPHIC ENGINEERING.
dc.relationLees, B. J. (1981). Relationship between eddy viscosity of seawater and eddy diffusivity of suspended particles. Geo-Marine Letters, 1 (3-4).
dc.relationLesser, G. R., Roelvink, J. A., van Kester, J. A., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51 (8-9).
dc.relationMaa, J. P.-Y., Kwon, J.-I., Hwang, K.-N., & Ha, H.-K. (2008). Critical Bed-Shear Stress for Cohesive Sediment Deposition under Steady Flows. Journal of Hydraulic Engineering, 134 (12).
dc.relationMillares, A., Polo, M., Moñino, A., Herrero, J., & Losada, M. (2014). Bedload dynamics and associated snowmelt influence in mountainous and semiarid alluvial rivers. Geomorphology, 206, 330-342.
dc.relationMorgan, J. A., Kumar, N., Horner-Devine, A. R., Ahrendt, S., Istanbullouglu, E., & Bandaragoda, C. (2020). The use of a morphological acceleration factor in the simulation of large-scale fluvial morphodynamics. Geomorphology, 356, 107088.
dc.relationMorris, G. (2015). Management alternatives to combat reservoir sedimentation. First International Workshop on Sediment Bypass Tunnels.
dc.relationMorris, G. L., Fan, J. (1998). Reservoir Sedimentation Handbook. Aging.
dc.relationNavarro, H. R. (2004). Flume measurements of erosion characterstics of soil at bridge foundations in georgia.
dc.relationNCCHE (2017). CCHE2D-Sed Model. https://www.ncche.olemiss.edu/cche2d-sed-model.
dc.relationNezu, I. & Nakagawa, H. (1993). Turbulence in open channel flows.
dc.relationOmer, A. Y., Ali, Y. S., Roelvink, J. A., Dastgheib, A., Paron, P., & Crosato, A. (2015). Modelling of sedimentation processes inside Roseires Reservoir (Sudan). Earth Surface Dynamics.
dc.relationPalmieri, A., Shah, F., Annandale, G. W., & Dinar, A. (2003). Reservoir Conservation. The RESCON Approach. Washington, D.C.
dc.relationPapanicolaou, A. T. N., Elhakeem, M., Krallis, G., Prakash, S., & Edinger, J. (2008). Sediment Transport Modeling Review|Current and Future Developments. Journal of Hydraulic Engineering, 134 (1), 1-14.
dc.relationPartheniades, E. (1965). Erosion and Deposition of Cohesive Soils. Journal of the Hydraulics Division, 91 (1).
dc.relationPerea, I. M. (2013). Modelación del delta de sedimento en un embalse que presenta rápidas fluctuaciones de nivel.
dc.relationPoveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala interdecadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28 (107), 201-222.
dc.relationRamos, R. (2007). Modelación del Efecto del Viento Sobre la Estructura Térmica del Embalse Porce II. PhD thesis, Universidad Nacional de Colombia.
dc.relationRoelvink, J. A. (2006). Coastal morphodynamic evolution techniques. Coastal Engineering, 53 (2-3).
dc.relationRoldán Pérez, G. & Ramírez Restrepo, J. J. (2008). Fundamentos de limnología neotropical.
dc.relationSalehi, M. & Strom, K. (2012). Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations. Continental Shelf Research, 47.
dc.relationSchuurman, F., Marra, W. A., & Kleinhans, M. G. (2013). Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. Journal of geophysical research: Earth Surface, 118 (4), 2509-2527.
dc.relationSegal, E., Shouse, P. J., Bradford, S. A., Skaggs, T. H., & Corwin, D. L. (2009). Measuring particle size distribution using laser diffraction: Implications for predicting soil hydraulic properties. Soil Science, 174 (12).
dc.relationShi, B., Wang, Y. P., Yang, Y., Li, M., Li, P., Ni, W., & Gao, J. (2015). Determination of Critical Shear Stresses for Erosion and Deposition Based on in Situ Measurements of Currents and Waves over an Intertidal Mudat. Journal of Coastal Research, 31 (6).
dc.relationShields, A. (1936). Application of similarity principles and turbulence research to bed-load movement.
dc.relationSIEL (2018). Estadísticas y variables de generación.
dc.relationSutherland, J., Peet, A. H., & Soulsby, R. L. (2004). Evaluating the performance of morphological models. Coastal Engineering, 51 (8-9).
dc.relationUribe Suárez, D. A. (2015). Simulación de la Hidrodinámica Marina en la Región de Cartagena con Aplicaciones al Transporte de Sedimentos.
dc.relationU.S. Deparment of the Interior (2006). Erosion and Sedimentation Manual. Denver, CO.
dc.relationUSSD (2015). Modeling Sediment Movement in Reservoirs. Technical report, Denver, CO.
dc.relationVan der Wegen, M. & Roelvink, J. (2008). Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. Journal of Geophysical Research: Oceans, 113 (C3).
dc.relationvan Rijn, L. (1993). Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas.
dc.relationVan Rijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering.
dc.relationvan Rijn, L. C., Wasltra, D. J., Grasmeijer, B., Sutherland, J., Pan, S., & Sierra, J. P. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based pro_le models. Coastal Engineering, 47 (3).
dc.relationVelásquez, L. (2013). Modelación del transporte de sedimentos en el golfo de Urabá, Colombia. Universidad EAFIT Escuela de Ingeniería. Departamento de geología. Medellín.
dc.relationVelásquez, L. (2013). Modelación del transporte de sedimentos en el golfo de Urabá, Colombia. Universidad EAFIT Escuela de Ingeniería. Departamento de geología. Medellín.
dc.relationWang, Z., Xia, J., Deng, S., Zhang, J., & Li, T. (2017). One-dimensional morphodynamic model coupling open-channel flow and turbidity current in reservoir. Journal of Hydrology and Hydromechanics, 65 (1), 68-79.
dc.relationWentworth, C. K. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30 (5).
dc.relationWest, J. R., Oduyemi, K. O., Bale, A. J., & Morris, A. W. (1990). The field measurement of sediment transport parameters in estuaries. Estuarine, Coastal and Shelf Science, 30 (2).
dc.relationWilliams, R. D., Measures, R., Hicks, D. M., & Brasington, J. (2016). Assessment of a numerical model to reproduce event-scale erosion and deposition distributions in a braided river. Water Resources Research, 52 (8).
dc.relationXM (2021). Parámetros técnicos del sin.
dc.relationYen, B. C. (2002). Open Channel Flow Resistance. Journal of Hydraulic Engineering, 128 (1).
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleModelación numérica bidimensional de la dinámica de sedimentación en un embalse tropical.
dc.typeTesis


Este ítem pertenece a la siguiente institución