dc.contributorChala Palacios, María del Socorro
dc.contributorPinzón Velasco, Andrés
dc.contributorGrupo de Laboratorios de Salud pública (SDS)
dc.contributorSandra Liliana Gómez
dc.creatorGutiérrez Vásquez, Elizabeth
dc.date.accessioned2022-08-03T20:51:52Z
dc.date.available2022-08-03T20:51:52Z
dc.date.created2022-08-03T20:51:52Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81775
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractCandida auris es un hongo patógeno emergente y oportunista caracterizado por su difícil identificación con pruebas de diagnóstico convencionales, lo cual retrasa el tratamiento del paciente. Además, es común que éste patógeno presente resistencia a la primera línea de antimicóticos utilizados habitualmente en el tratamiento de infecciones por hongos (azoles, polienos y equinocandinas). Está resistencia ha sido asociada a mutaciones genómicas, las cuales también han sido encontradas en otras especies patógenas del género Candida. Por otro lado, la falta de información sobre su diversidad genética en la mayoría de aislamientos ha impedido estudiar a fondo el impacto de estas mutaciones y de la epidemiologia genómica de este microorganismo. En este estudio se buscó caracterizar aislamientos de C. auris enviados al laboratorio de salud pública de Bogotá como parte del programa de vigilancia epidemiológica. En un estudio descriptivo y de corte trasversal, 20 aislamientos obtenidos de hospitales de Bogotá fueron identificados como C. auris mediante técnicas fenotípicas y caracterizados molecularmente usando espectometría de masas maldiTOF y NGS (Secuenciación de Nueva Generación). La identificación de los 20 aislamientos se confirmó mediante análisis filogenéticos. La diversidad genética observada fue baja y sugirió la existencia del efecto de selección direccional o selección de fondo. Se identificaron cuatro genotipos por sus perfiles MLST que podrían optimizarse ya que no describeron la totalidad de la diversidad genética en los aislamientos bogotanos. Aunque no se encontraron mutaciones asociadas a resistencia, sí se encontraron duplicaciones en varios genes, incluyendo adp1, pmi1, zwF1b y se presentaron cambios de mutaciones parsimoniosas vps13, zwF1b, cdr1 y erg3. También se observaron sustitución de aminoácidos en algunos de estos genes: erg3 (H771R), erg11 (G459S) y rpn2 (K898E). Los análisis de diversidad genética y filogenéticos mostraron una baja diversidad genética en los 20 aislamientos bogotanos, todos estos agrupándose dentro del clado IV de Suramérica y presentando un número relativamente bajo de diferencias de SNP entre ellos, aunque lo suficientemente alto como para sugerir ausencia de clonalidad en estos aislamientos. Además, las desviaciones del modelo de neutralidad selectiva sugieren que la baja diversidad podría explicarse por un modelo de expansión de la población. A partir de estos hallazgos, se sugiere que C. auris ha tenido una trasmisión continua y generalizada en el territorio colombiano. (Texto tomado de la fuente)
dc.description.abstractCandida auris is an emerging, opportunistic and pathogenic fungus characterized by its difficult identification through conventional diagnostic tests, thus delaying the treatment of the patient. Furthermore, it is usual for this pathogen to be resistant to the antifungals of first line utilized commonly for treating fungal infections (azoles, polyenes and echinocandins). This resistance has been associated to genomic mutations, which have also been found in other pathogenic species of Candida. On the other hand, the lack of information about the genetic diversity in the great majority of isolates has hampered to deeply study the impact of this mutations and the genomic epidemiology of this pathogen. This study aimed at characterizing C. auris isolates sent to the public health laboratory of Bogotá as part of an epidemiological surveillance program. In this descriptive and cross-sectional study, 20 isolates obtained from hospitals in Bogotá were identified as C. auris through phenotypic techniques and molecularly characterized using MALDI-TOF mass spectrometry and NGS (Next Generation Sequencing). The identification of the 20 isolates was confirmed by phylogenetic analysis. The genetic diversity observed was low and suggested the presence of effects of directional selection or background selection. Four genotypes were identified using their MLST profiles, as though this technique could be optimized since these profiles did not describe the complete genetic diversity presented by Bogota isolates. Although resistance-associated mutations were not found, duplications were found in several genes, including adp1, pmi1, zwF1b, and parsimonious mutation changes vps13, zwF1b, cdr1, and erg3. Some of these genes also presented the following amino acid substitutions: erg3 (H771R), erg11 (G459S), and rpn2 (K898E). The genetic diversity and phylogenetic analyzes showed a low genetic diversity in the 20 Bogotá isolates, all of them grouped within the clade IV of South America and presenting a relatively low number of SNP differences between them, although this number was high enough to suggest the absence of clonality in these isolates. Furthermore, the deviations from the model of selective neutrality suggest that a population expansion model could explain the low diversity. From these findings, it is suggested that C. auris has had a continuous and generalized transmission in the Colombian territory.
dc.languagespa
dc.publisherUniversidad Nacional Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherInstituto de Biotecnología (IBUN)
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relation1. Mizusawa, M., et al., Can Multidrug-Resistant Candida auris Be Reliably Identified in Clinical Microbiology Laboratories? Journal of Clinical Microbiology, 2017. 55(2): p. 638.
dc.relation2. Satoh, K., et al., Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiology and Immunology, 2009. 53(1): p. 41-44.
dc.relation3. Lee, W.G., et al., First three reported cases of nosocomial fungemia caused by Candida auris. Journal of Clinical Microbiology, 2011. 49(9): p. 3139.
dc.relation4. Khillan, V., et al., A rare case of breakthrough fungal pericarditis due to fluconazole‐resistant Candida auris in a patient with chronic liver disease. JMM Case Reports, 2014. 1(3).
dc.relation5. Chowdhary, A., et al., New clonal strain of Candida auris, Delhi, India. Emerging infectious diseases, 2013. 19(10): p. 1670-1673.
dc.relation6. Pfaller, M.A., Epidemiology of nosocomial candidiasis: the importance of molecular typing. Braz J Infect Dis, 2000. 4(4): p. 161-7
dc.relation7. Chowdhary, A., et al., Multidrug-resistant endemic clonal strain of Candida auris in India. European Journal of Clinical Microbiology & Infectious Diseases, 2014. 33(6): p. 919-926.
dc.relation8. Brown, G.D., et al., Hidden Killers: Human Fungal Infections. Science Translational Medicine, 2012. 4(165): p. 165rv13.
dc.relation9. Lockhart, S.R., et al., Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases, 2016. 64(2): p. 134-140.
dc.relation10. Estrada-Barraza, D., et al., Comparación entre métodos convencionales, ChromAgar Candida® y el método de la PCR para la identificación de especies de Candida en aislamientos clínicos. Revista Iberoamericana de Micología, 2011. 28(1): p. 36-42
dc.relation11. Mancini, N., et al., Comparative Evaluation of the Bruker Biotyper and Vitek MS Matrix-Assisted Laser Desorption Ionization–Time Of Flight (MALDI-TOF) Mass Spectrometry Systems for Identification of Yeasts of Medical Importance. Journal of Clinical Microbiology, 2013. 51(7): p. 2453.
dc.relation12. Kathuria, S., et al., Multidrug-Resistant Candida auris Misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and DNA Sequencing and Its Antifungal Susceptibility Profile Variability by Vitek 2, CLSI Broth Microdilution, and Etest Method. Journal of Clinical Microbiology, 2015. 53(6): p. 1823.
dc.relation13. Girard, V., et al., Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser desorption ionisation time of flight mass spectrometry. Mycoses, 2016. 59(8): p. 535-538.
dc.relation14. Chybowska, A.D., D.S. Childers, and R.A. Farrer, Nine Things Genomics Can Tell Us About Candida auris. Frontiers in Genetics, 2020. 11: p. 351.
dc.relation15. Jeffery-Smith, A., et al., Candida auris: a Review of the Literature. Clinical Microbiology Reviews, 2018. 31(1): p. e00029-17.
dc.relation16. Ademe, M., F.J.I. Girma, and D. Resistance, Candida auris: From Multidrug Resistance to Pan-Resistant Strains. Infect Drug Resist, 2020. 13: p. 1287-1294.
dc.relation17. Chowdhary, A., C. Sharma, and J.F.J.P.p. Meis, Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog, 2017. 13(5): p. e1006290.
dc.relation18. Kwon, Y.J., et al., Candida auris Clinical Isolates from South Korea: Identification, Antifungal Susceptibility, and Genotyping. J Clin Microbiol, 2019. 57(4).
dc.relation19. Magobo, R.E., et al., Candida auris-associated candidemia, South Africa. Emerging infectious diseases, 2014. 20(7): p. 1250-1251.
dc.relation20. Emara, M., et al., Candida auris candidemia in Kuwait, 2014. Emerging infectious diseases, 2015.
dc.relation21. Calvo, B., et al., First report of Candida auris in America: clinical and microbiological aspects of 18 episodes of candidemia. J Infect, 2016. 73(4): p. 369-374.
dc.relation22. Ben-Ami, R., et al., Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerging infectious diseases, 2017. 23(1): p. 195-203.
dc.relation23. Morales-López, S.E., et al., Invasive Infections with Multidrug-Resistant Yeast Candida auris, Colombia. Emerging infectious diseases, 2017. 23(1): p. 162-164.
dc.relation24. Escandón, P., et al., Molecular Epidemiology of Candida auris in Colombia Reveals a Highly Related, Countrywide Colonization With Regional Patterns in Amphotericin B Resistance. Clinical Infectious Diseases, 2018. 68(1): p. 15-21.
dc.relation25. Paige, A.A., et al., Hospital-Associated Multicenter Outbreak of Emerging Fungus <em>Candida auris</em>, Colombia, 2016. Emerging Infectious Disease journal, 2019. 25(7): p. 1339.
dc.relation26. Pappas, P.G., et al., Invasive candidiasis. Nature Reviews Disease Primers, 2018. 4(1): p. 18026.
dc.relation27. Carvajal-Valencia, S.K.J.I., Identificación de aislamientos de Candida auris recuperados a través de la vigilancia por laboratorio en Colombia: un reto para el diagnóstico. 2020. 24(4): p. 224-228.
dc.relation28. Ambaraghassi, G., et al., Identification of Candida auris by Use of the Updated Vitek 2 Yeast Identification System, Version 8.01: a Multilaboratory Evaluation Study Journal of Clinical Microbiology, 2019. 57(11): p. e00884-19.
dc.relation29. Iguchi, S., et al., Candida auris: A pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. 2019. 25(10): p. 743-749.
dc.relation30. Britz, E. and N.P.J.S.A.J.o.I.D. Govender, Global emergence of a multi-drug resistant fungal pathogen, Candida auris. 2016. 31(3): p. 3-4.
dc.relation31. Lesho, E.P., et al., Importation, Mitigation, and Genomic Epidemiology of Candida auris at a Large Teaching Hospital. Infection Control & Hospital Epidemiology, 2018. 39(1): p. 53-57.
dc.relation32. Clancy, C.J. and M.H. Nguyen, Emergence of Candida auris: An International Call to Arms. Clinical Infectious Diseases, 2016. 64(2): p. 141-143.
dc.relation33. Calvo, B., et al., First report of Candida auris in America: Clinical and microbiological aspects of 18 episodes of candidemia. J Infect, 2016. 73(4): p. 369-74.
dc.relation34. Sharma, C., et al., Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect, 2016. 13: p. 77-82.
dc.relation35. Rudramurthy, S.M., et al., Candida auris candidaemia in Indian ICUs: analysis of risk factors. Journal of Antimicrobial Chemotherapy, 2017. 72(6): p. 1794-1801.
dc.relation36. Moreno, M.V., et al., Primer aislamiento de Candida auris en Chile %J Revista chilena de infectología. 2019. 36: p. 767-773.
dc.relation37. de Jong, A.W. and F. Hagen, Attack, Defend and Persist: How the Fungal Pathogen Candida auris was Able to Emerge Globally in Healthcare Environments. Mycopathologia, 2019. 184(3): p. 353-365.
dc.relation38. SDS Secretaria de Salud Pública, C., Alerta por emergencia global de infecciones invasivas causadas por la levadura multiresistente, Candida auris, D.R.e.S.P. Grupo de Microbiología, Editor 2017.
dc.relation39. Kim, T.-H., et al., Identification of uncommon Candida species using commercial identification systems. J Microbiol Biothechnol, 2016. 26(12): p. 2206-13.
dc.relation40. Vallabhaneni, S., et al., Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013–August 2016. Morbidity and Mortality Weekly Report, 2016. 65(44): p. 1234-1237.
dc.relation41. Chatterjee, S., et al., Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics, 2015. 16(1): p. 686.
dc.relation42. Reedy, J.L., A.M. Floyd, and J.J.C.B. Heitman, Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Current Biology, 2009. 19(11): p. 891-899.
dc.relation43. Bravo Ruiz, G., et al., Rapid and extensive karyotype diversification in haploid clinical Candida auris isolates. Current Genetics, 2019. 65(5): p. 1217-1228.
dc.relation44. Kullberg, B.J. and M.C. Arendrup, Invasive Candidiasis. The NEW WNGLAND JOURNAL of MEDICINE, 2015. 373(15): p. 1445-1456.
dc.relation45. Plachouras, D., et al., Candida auris: epidemiological situation, laboratory capacity and preparedness in the European Union and European Economic Area*, January 2018 to May 2019. Eurosurveillance, 2020. 25(12): p. 2000240.
dc.relation46. Rhodes, J., et al., Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerging Microbes & Infections, 2018. 7(1): p. 1-12.
dc.relation47. Salud, O.O.M.d.l. Alerta Epidemiológica Brotes de Candida auris en servicios de atención a la salud. 2016.
dc.relation48. Schelenz, S., et al., First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrobial Resistance & Infection Control, 2016. 5(1): p. 35.
dc.relation49. Osei Sekyere, J., Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. MicrobiologyOpen, 2018. 7(4): p. e00578.
dc.relation50. Welsh, R.M., et al., Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. Journal of Clinical Microbiology, 2017. 55(10): p. 2996.
dc.relation51. Mohsin, J., et al., The first cases of Candida auris candidaemia in Oman. Mycoses, 2017. 60(9): p. 569-575.
dc.relation52. Borman, A.M., A. Szekely, and E.M. Johnson, Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species. mSphere, 2016. 1(4): p. e00189-16.
dc.relation53. Kumar, A., et al., Simple low cost differentiation of Candida auris from Candida haemulonii complex using CHROMagar Candida medium supplemented with Pal's medium. Iberoamericana de micología, 2017. 34(2): p. 109-111.
dc.relation54. Borman, A.M., A. Szekely, and E.M. Johnson, Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species mSphere, 2016. 1(4): p. e00189-16.
dc.relation55. Borman, A.M., A. Szekely, and E.M. Johnson, Isolates of the emerging pathogen Candida auris present in the UK have several geographic origins. Medical Mycology, 2017. 55(5): p. 563-567.
dc.relation56. Larkin, E., et al., The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2017. 61(5): p. e02396-16.
dc.relation57. CDC Centers for Disease Control and Prevention, CDC 24/7: Saving Lives, Protecting People, Antifungal Susceptibility Testing and Interpretation C. auris. 2020; Available from: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html.
dc.relation58. Lepak, A.J., et al., Pharmacodynamic Optimization for Treatment of Invasive Candida auris Infection. Antimicrob Agents Chemother, 2017. 61(8).
dc.relation59. Alemàn Almanza, T.M., Determinación de la sensibilidad antifúngica en aislamientos clínicos de Candida auris asociados a procesos invasivos y de colonización recuperados en Cartagena, Colombia, in Facultad de Ciencias2018, Pontifica Universidad Javeriana Bogotá.
dc.relation60. Kumar, A., et al., Candida haemulonii species complex: an emerging species in India and its genetic diversity assessed with multilocus sequence and amplified fragment-length polymorphism analyses. Emerging Microbes & Infections, 2016. 5(1): p. 1-12.
dc.relation61. Cendejas-Bueno, E., et al., Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol, 2012. 50(11): p. 3641-51.
dc.relation62. Bishop, L., et al., Guidance for the laboratory investigation, management and infection prevention and control for cases of Candida auris. Public Health England, 2017.
dc.relation63. Piedrahita, C.T., et al., Environmental Surfaces in Healthcare Facilities are a Potential Source for Transmission of Candida auris and Other Candida Species. Infection Control & Hospital Epidemiology, 2017. 38(9): p. 1107-1109.
dc.relation64. Cadnum, J.L., et al., Relative Resistance of the Emerging Fungal Pathogen Candida auris and Other Candida Species to Killing by Ultraviolet Light. Infection Control & Hospital Epidemiology, 2018. 39(1): p. 94-96.
dc.relation65. Ospina, M.A.R.y.M.C., "Evaluación, control y vigilancia de Candida auris en Medellín", in Boletín Epidemiologíco, S.d.S.d. Medellín, Editor 2019.
dc.relation66. Diomedi, A., et al., Antisépticos y desinfectantes: apuntando al uso racional. Recomendaciones del Comité Consultivo de Infecciones Asociadas a la Atención de Salud, Sociedad Chilena de Infectología %J Revista chilena de infectología. 2017. 34: p. 156-174.
dc.relation67. Biswal, M., et al., Controlling a possible outbreak of Candida auris infection: lessons learnt from multiple interventions. Journal of Hospital Infection, 2017. 97(4): p. 363-370.
dc.relation68. Metzker, M.L., Sequencing technologies — the next generation. Nature Reviews Genetics, 2010. 11(1): p. 31-46.
dc.relation69. Ruiz-Gaitán, A., et al., An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses, 2018. 61(7): p. 498-505.
dc.relation70. Kordalewska, M., et al., Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen &lt;span class=&quot;named-content genus-species&quot; id=&quot;named-content-1&quot;&gt;Candida auris&lt;/span&gt. Journal of Clinical Microbiology, 2017. 55(8): p. 2445.
dc.relation71. Long, S.W., et al., Draft Genome Sequence of Candida auris Strain LOM, a Human Clinical Isolate from Greater Metropolitan Houston, Texas. Microbiology Resource Announcements, 2019. 8(25): p. e00532-19.
dc.relation72. Reuter, Jason A., D.V. Spacek, and Michael P. Snyder, High-Throughput Sequencing Technologies. Molecular Cell, 2015. 58(4): p. 586-597.
dc.relation73. Gargis, A.S., L. Kalman, and I.M. Lubin, Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories. Journal of Clinical Microbiology, 2016: p. JCM.00949-16.
dc.relation74. Kuleshov, V., et al., Whole-genome haplotyping using long reads and statistical methods. Nature Biotechnology, 2014. 32(3): p. 261-266.
dc.relation75. Chui, C.a.M., S., Next-Generation Sequencing, in Molecular Microbiology2016. p. 68-79.
dc.relation76. Olson, N.D., et al., Best practices for evaluating single nucleotide variant calling methods for microbial genomics. 2015. 6(235).
dc.relation77. Maldonado, I., et al., Identificación de levaduras del género Candida: los métodos convencionales frente a MALDI-TOF MS. Revista Iberoamericana de Micología, 2018. 35(3): p. 151-154.
dc.relation78. Pence, M.A., et al., Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. European Journal of Clinical Microbiology & Infectious Diseases, 2014. 33(10): p. 1703-1712.
dc.relation79. Prakash, A., et al., Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. 2016. 22(3): p. 277. e1-277. e9.
dc.relation80. Kwon, Y.J., et al., Candida auris Clinical Isolates from South Korea: Identification, Antifungal Susceptibility, and Genotyping. Journal of Clinical Microbiology, 2019. 57(4): p. e01624-18.
dc.relation81. Oh, B.J., et al., Biofilm formation and genotyping of Candida haemulonii, Candida pseudohaemulonii, and a proposed new species (Candida auris) isolates from Korea. Medical Mycology, 2011. 49(1): p. 98-102.
dc.relation82. Lockhart, S.R., et al., Thinking beyond the Common Candida Species: Need for Species-Level Identification of Candida Due to the Emergence of Multidrug-Resistant Candida auris. Journal of Clinical Microbiology, 2017. 55(12): p. 3324.
dc.relation83. Arendrup, M.C., et al., Comparison of EUCAST and CLSI Reference Microdilution MICs of Eight Antifungal Compounds for Candida auris and Associated Tentative Epidemiological Cutoff Values. Antimicrobial Agents and Chemotherapy, 2017. 61(6): p. e00485-17.
dc.relation84. Heath, C.H., et al., Candida auris Sternal Osteomyelitis in a Man from Kenya Visiting Australia, 2015. Emerging infectious diseases, 2019. 25(1): p. 192-194.
dc.relation85. Croxatto, A., G. Prod'hom, and G.J.F.m.r. Greub, Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. 2012. 36(2): p. 380-407.
dc.relation86. Boekhout, T., et al., Identification, typing and susceptibility testing of fungi (incl. Yeasts) by MALDI-TOF MS. 2016.
dc.relation87. Kathuria, S., et al., Multidrug-Resistant Candida auris Misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and DNA Sequencing and Its Antifungal Susceptibility Profile Variability by Vitek 2, CLSI Broth Microdilution, and Etest Method Journal of Clinical Microbiology, 2015. 53(6): p. 1823.
dc.relation88. Chowdhary, A., et al., A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. Journal of Antimicrobial Chemotherapy, 2018. 73(4): p. 891-899.
dc.relation89. Guo, J., et al., Four-color DNA sequencing with 3'-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc Natl Acad Sci U S A, 2008. 105(27): p. 9145-50.
dc.relation90. Dohm, J.C., et al., Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res, 2008. 36(16): p. 26.
dc.relation91. Urwin, R. and M.C. Maiden, Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol, 2003. 11(10): p. 479-87.
dc.relation92. Tavanti, A., et al., Multilocus sequence typing for differentiation of strains of Candida tropicalis. 2005. 43(11): p. 5593-5600.
dc.relation93. Tavanti, A., et al., Population structure and properties of Candida albicans, as determined by multilocus sequence typing. 2005. 43(11): p. 5601-5613.
dc.relation94. Maiden, M.C., et al., Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998. 95(6): p. 3140-5.
dc.relation95. Maiden, M.C., Multilocus sequence typing of bacteria. Annu Rev Microbiol, 2006. 60: p. 561-88.
dc.relation96. Bougnoux, M.-E., et al., Collaborative consensus for optimized multilocus sequence typing of Candida albicans. 2003. 41(11): p. 5265-5266.
dc.relation97. Morschhäuser, J., et al., The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog, 2007. 3(11): p. e164.
dc.relation98. Chaabane, F., et al., Review on Antifungal Resistance Mechanisms in the Emerging Pathogen Candida auris. Front Microbiol, 2019. 10(2788).
dc.relation99. Cowen, L.E., et al., Mechanisms of antifungal drug resistance. Cold Spring Harbor perspectives in medicine, 2015. 5(7): p. a019752.
dc.relation100. Zamith-Miranda, D., et al., Multi-omics Signature of Candida auris, an Emerging and Multridrug-Resistant Pathogen. mSystems, 2019. 4(4): p. e00257-19.
dc.relation101. Whaley, S.G., et al., Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Frontiers in microbiology, 2017. 7: p. 2173.
dc.relation102. Kean, R. and G. Ramage, Combined Antifungal Resistance and Biofilm Tolerance: the Global Threat of Candida auris. mSphere, 2019. 4(4): p. e00458-19.
dc.relation103. Rybak, J.M., et al., Abrogation of Triazole Resistance upon Deletion of CDR1 in a Clinical Isolate of Candida auris. Antimicrobial Agents and Chemotherapy, 2019. 63(4): p. e00057-19.
dc.relation104. Muñoz, J.F., et al., Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nature Communications, 2018. 9(1): p. 5346
dc.relation105. Tapia, C. and C.J.R.c.d.i.o.o.d.l.S.C.d.I. Batarce, Multidrug-resistant Candida auris:" new kid on the block" in hospital-associated infections? Revista Chilena de Infectología: Organo oficial de la Sociedad Chilena de Infectología, 2017. 34(2): p. 192-192.
dc.relation106. Rybak, J.M., et al., Mutations in TAC1B: a Novel Genetic Determinant of Clinical Fluconazole Resistance in Candida auris. mBio, 2020. 11(3): p. e00365-20.
dc.relation107. Martins, I.M., et al., Differential activities of three families of specific β (1, 3) glucan synthase inhibitors in wild-type and resistant strains of fission yeast. Journal of Biological Chemestry, 2011. 286(5): p. 3484-3496.
dc.relation108. Kordalewska, M., et al., Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris. Antimicrobial Agents and Chemotherapy, 2018. 62(6): p. e00238-18.
dc.relation109. Sherry, L., et al., Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant Candida auris. Emerging infectious diseases, 2017. 23(2): p. 328-331.
dc.relation110. Day, A.M., et al., Hog1 Regulates Stress Tolerance and Virulence in the Emerging Fungal Pathogen Candida auris. mSphere, 2018. 3(5): p. e00506-18.
dc.relation111. Dominguez, E.G., et al., Conserved Role for Biofilm Matrix Polysaccharides in Candida auris Drug Resistance mSphere, 2019. 4(1): p. e00680-18.
dc.relation112. Fakhim, H., et al., Comparative virulence of Candida auris with Candida haemulonii, Candida glabrata and Candida albicans in a murine model. Mycoses, 2018. 61(6): p. 377-382.
dc.relation113. Kean, R., et al., ranscriptome Assembly and Profiling of Candida auris Reveals Novel Insights into Biofilm-Mediated Resistance mSphere, 2018. 3(4): p. e00334-18.
dc.relation114. Meis, J. and A.J.L.I.D. Chowdhary, Candida auris: a global fungal public health threat. Lancet Infectious Diseases, 2018. 18: p. 1298-1299.
dc.relation115. Sayeed, M.A., et al., Clinical spectrum and factors impacting outcome of Candida auris: a single center study from Pakistan. BMC Infectious Diseases, 2019. 19(1): p. 384.
dc.relation116. Kohlenberg, A., et al., Candida auris: epidemiological situation, laboratory capacity and preparedness in European Union and European Economic Area countries, 2013 to 2017. 2018. 23(13): p. 18-00136.
dc.relation117. Gaitán, A.C.R., et al., Nosocomial fungemia by Candida auris: first four reported cases in continental Europe. Revista Iberoamericana de Micología, 2017. 34(1): p. 23-27.
dc.relation118. Pekard-Amenitsch, S., et al., Isolation of Candida auris from Ear of Otherwise Healthy Patient, Austria, 2018. Emerging infectious diseases, 2018. 24(8): p. 1596-1597.
dc.relation119. Chow, N.A., et al., Potential Fifth Clade of Candida auris, Iran, 2018. Emerging infectious diseases, 2019. 25(9): p. 1780-1781.
dc.relation120. Abastabar, M., et al., Candida auris otomycosis in Iran and review of recent literature. Mycoses, 2019. 62(2): p. 101-105.
dc.relation121. Riat, A., et al., First case of Candida auris in Switzerland: discussion about preventive strategies. Swiss medical weekly, 2018. 148.
dc.relation122. Tang, H.J., et al., Emergence of multidrug-resistant Candida auris in Taiwan. Int J Antimicrob Agents, 2019. 53(5): p. 705-706.
dc.relation123. Chowdhary, A., A. Voss, and J.J.J.o.H.I. Meis, Multidrug-resistant Candida auris:‘new kid on the block’in hospital-associated infections? Journal of Hospital Infection, 2016. 94(3): p. 209-212.
dc.relation124. Abdalhamid, B., et al., First report of Candida auris infections from Saudi Arabia. J Infect Public Health, 2018. 11(4): p. 598-599.
dc.relation125. Chen, Y., et al., Emergency of fungemia cases caused by fluconazole-resistant Candida auris in Beijing, China. Journal of Infection, 2018. 77(6): p. 561-571.
dc.relation126. Schwartz, I.S. and G.W. Hammond, First reported case of multidrug-resistant Candida auris in Canada. Canada communicable disease report = Releve des maladies transmissibles au Canada, 2017. 43(7-8): p. 150-153.
dc.relation127. Iguchi, S., et al., The second Candida auris isolate from aural discharge in Japan. Japanese Journal of Infectious Diseases, 2018: p. JJID. 2017.466.
dc.relation128. Araúz, A.B., et al., Isolation of Candida auris from 9 patients in Central America: Importance of accurate diagnosis and susceptibility testing. Mycoses, 2018. 61(1): p. 44-47.
dc.relation129. Tan, Y.E., et al., Candida auris in Singapore: Genomic epidemiology, antifungal drug resistance, and identification using the updated 8.01 VITEKⓇ 2 system. 2019. 54(6): p. 709-715.
dc.relation130. Ahmad, A., et al., A high-throughput and rapid method for accurate identification of emerging multidrug-resistant Candida auris. Mycoses, 2019. 62(6): p. 513-518.
dc.relation131. Qu, X., et al., MADS-box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum. International journal of molecular sciences, 2014. 15(5): p. 8049-8062.
dc.relation132. Calcagno, A.-M., et al., Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Molecular Microbiology, 2003. 50(4): p. 1309-1318.
dc.relation133. Dharmendra, K., et al., Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis. The Journal of Infection in Developing Countries, 2015. 9(04).
dc.relation134. Prakash, A., et al., Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clinical Microbiology and Infection, 2016. 22(3): p. 277. e1-277. e9.
dc.relation135. Muñoz, J.F., et al., Chromosomal rearrangements and loss of subtelomeric adhesins linked to clade-specific phenotypes in Candida auris. bioRxiv, 2019: p. 754143.
dc.relation136. Chow, N.A., et al., Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. The Lancet Infectious Diseases, 2018. 18(12): p. 1377-1384.
dc.relation137. Chow, N.A., et al., Genome Sequence of a Multidrug-Resistant Candida haemulonii Isolate from a Patient with Chronic Leg Ulcers in Israel. Genome Announc, 2018. 6(15).
dc.relation138. Chow, N.A., et al., Genome Sequence of the Amphotericin B-Resistant Candida duobushaemulonii Strain B09383. Genome Announc, 2018. 6(13).
dc.relation139. Chybowska, A.D., D.S. Childers, and R.A. Farrer, Nine Things Genomics Can Tell Us About Candida auris. Front Microbiol, 2020. 11(351).
dc.relation140. Sarma, S., et al., Candidemia caused by amphotericin B and fluconazole resistant Candida auris. Indian J Med Microbiol, 2013. 31(1): p. 90.
dc.relation141. Shackleton, J., et al., The impact of environmental decontamination in a Candida auris outbreak. J Hosp infect, 2016. 94(Suppl 1): p. S24-S134.
dc.relation142. Tian, S., et al., First cases and risk factors of super yeast Candida auris infection or colonization from Shenyang, China. Emerging Microbes & Infections, 2018. 7(1): p. 1-9.
dc.relation143. Azar, M.M., et al., Donor-Derived Transmission of Candida auris During Lung Transplantation. Clinical Infectious Diseases, 2017. 65(6): p. 1040-1042.
dc.relation144. Tsay, S., et al., Notes from the Field: Ongoing Transmission of Candida auris in Health Care Facilities - United States, June 2016-May 2017. MMWR. Morbidity and mortality weekly report, 2017. 66(19): p. 514-515.
dc.relation145. Preventation, C.C.f.D.C.a. CDC. Infection Prevention and Control for Candida auris. 2017; Deparment of Health EE.UU, CDC:[Available from: https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Ffungal%2Fdiseases%2Fcandidiasis%2Fc-auris-infection-control.html.
dc.relation146. Wey, S.B., et al., Risk Factors for Hospital-Acquired Candidemia: A Matched Case-Control Study. Archives of Internal Medicine, 1989. 149(10): p. 2349-2353.
dc.relation147. CDC. Treatment and Management of Infections and Colonization. Recommendations for treatment of Candida auris infections. 2019; Deparment of Health:[Available from: https://www.cdc.gov/fungal/candida-auris/c-auris-treatment.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Ffungal%2Fdiseases%2Fcandidiasis%2Fc-auris-treatment.html.
dc.relation148. Fakhim, H., et al., In Vitro Interactions of Echinocandins with Triazoles against Multidrug-Resistant Candida auris. Antimicrobial Agents and Chemotherapy, 2017. 61(11): p. e01056-17.
dc.relation149. Eldesouky, H.E., et al., Synergistic interactions of sulfamethoxazole and azole antifungal drugs against emerging multidrug-resistant Candida auris. Int J Antimicrob Agents, 2018. 52(6): p. 754-761.
dc.relation150. Andrews, S., FastQC: a quality control tool for high throughput sequence data, 2010, Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.
dc.relation151. Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114-2120
dc.relation152. Zerbino, D.R. and E.J.G.r. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. 2008. 18(5): p. 821-829.
dc.relation153. Bankevich, A., et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. 2012. 19(5): p. 455-477.
dc.relation154. Gurevich, A., et al., QUAST: quality assessment tool for genome assemblies. 2013. 29(8): p. 1072-1075.
dc.relation155. Keller, O., et al., A novel hybrid gene prediction method employing protein multiple sequence alignments. 2011. 27(6): p. 757-763.
dc.relation156. Kaas, R.S., et al., Solving the problem of comparing whole bacterial genomes across different sequencing platforms. 2014. 9(8): p. e104984.
dc.relation157. Darriba, D., et al., jModelTest 2: more models, new heuristics and parallel computing. 2012. 9(8): p. 772-772.
dc.relation158. Benson, D., et al., GenBank Nucleic Acids Res 41 (D1). 2013.
dc.relation159. Benson, D.A., et al., GenBank. Nucleic Acids Res, 2012. 40(Database issue): p. D48-53.
dc.relation160. Edgar, R.C.J.N.a.r., MUSCLE: multiple sequence alignment with high accuracy and high throughput. 2004. 32(5): p. 1792-1797.
dc.relation161. Posada, D.J.M.b. and evolution, jModelTest: phylogenetic model averaging. 2008. 25(7): p. 1253-1256.
dc.relation162. Posada, D., Selection of Models of DNA Evolution with jM odel T est, in Bioinformatics for DNA sequence analysis2009, Springer. p. 93-112.
dc.relation163. Kumar, S., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms. 2018. 35(6): p. 1547-1549.
dc.relation164. Felsenstein, J.J.e., Confidence limits on phylogenies: an approach using the bootstrap. 1985. 39(4): p. 783-791.
dc.relation165. Ronquist, F., et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. 2012. 61(3): p. 539-542
dc.relation166. Byun, S.A., et al., Multilocus sequence typing (MLST) genotypes of Candida glabrata bloodstream isolates in Korea: association with antifungal resistance, mutations in mismatch repair gene (Msh2), and clinical outcomes. 2018. 9: p. 1523.
dc.relation167. Biswas, C., et al., Whole Genome Sequencing of Australian Candida glabrata Isolates Reveals Genetic Diversity and Novel Sequence Types. 2018. 9(2946).
dc.relation168. Asadzadeh, M., et al., Molecular Fingerprinting Studies Do Not Support Intrahospital Transmission of Candida albicans among Candidemia Patients in Kuwait. 2017. 8(247).
dc.relation169. Bougnoux, M.-E., S. Morand, and C.J.J.o.c.m. d'Enfert, Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. 2002. 40(4): p. 1290-1297.
dc.relation170. Wu, K., et al., Multilocus sequence typing of pathogenic Candida albicans isolates collected from a teaching hospital in Shanghai, China: a molecular epidemiology study. 2015. 10(4): p. e0125245.
dc.relation171. Tajima, F.J.G., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. 1989. 123(3): p. 585-595.
dc.relation172. Fu, Y.X. and W.H. Li, Statistical tests of neutrality of mutations. Genetics, 1993. 133(3): p. 693-709.
dc.relation173. Fu, Y.-x.J.G., New statistical tests of neutrality for DNA samples from a population. 1996. 143(1): p. 557-570.
dc.relation174. Rozas, J., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets. 2017. 34(12): p. 3299-3302.
dc.relation175. Letunic, I. and P.J.B. Bork, Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. 2007. 23(1): p. 127-128.
dc.relation176. Kathuria, S., et al., Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization–time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. 2015. 53(6): p. 1823-1830.
dc.relation177. Rhodes, J. and M.C. Fisher, Global epidemiology of emerging Candida auris. Curr Opin Microbiol, 2019. 52: p. 84-89.
dc.relation178. Kondrashov, F.A. and A.S.J.J.o.T.B. Kondrashov, Role of selection in fixation of gene duplications. 2006. 239(2): p. 141-151.
dc.relation179. Hou, X., et al., Rapid detection of ERG11-associated azole resistance and FKS-associated echinocandin resistance in Candida auris. 2019. 63(1): p. e01811-18
dc.relation180. Di Pilato, V., et al., Molecular Epidemiological Investigation of a Nosocomial Cluster of C. auris: Evidence of Recent Emergence in Italy and Ease of Transmission during the COVID-19 Pandemic. J Fungi, 2021. 7(2).
dc.relation181. Hamprecht, A., et al., Candida auris in Germany and Previous Exposure to Foreign Healthcare. Emerging infectious diseases, 2019. 25(9): p. 1763-1765.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCaracterización genética mediante secuenciación de siguiente generación de Candida auris aislada de infecciones invasivas en hospitales de Bogotá
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución