dc.contributorLamprea Rodríguez, Marisol
dc.contributorOrtega Murillo, Leonardo Augusto
dc.contributorNeurociencia Básica y Cognoscitiva
dc.creatorCampos León, Estrella Lirdeya
dc.date.accessioned2022-07-05T13:05:40Z
dc.date.available2022-07-05T13:05:40Z
dc.date.created2022-07-05T13:05:40Z
dc.date.issued2022-06-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81675
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLa investigación actual ha destacado la importancia del aprendizaje asociativo en la adicción. Se ha mostrado que por medio de procedimientos pavlovianos las claves asociadas a un estímulo apetitivo como una droga pueden adquirir saliencia de incentivo, volviéndose más atractivas y facilitando comportamientos de búsqueda de droga y recaída. La asignación de saliencia de incentivo puede variar según el fenotipo de los sujetos (goal trackers o sign trackers). Aunque en ambos fenotipos el estímulo condicionado (EC) adquiere valor predictivo sobre el estímulo incondicionado (EI), solo en los sign trackers el EC adquiere saliencia de incentivo. Al respecto, se ha reportado que la nicotina tiene la capacidad de amplificar el valor de incentivo de claves asociadas a estímulos apetitivos como la comida o el agua. El presente estudio tuvo como objetivo evaluar los efectos de la administración crónica de nicotina en la adquisición de una tarea de automoldeamiento y la expresión de FosB/DFosB en áreas relacionadas con la saliencia de incentivo. 61 ratas macho Wistar clasificadas como sign trackers fueron entrenadas en una tarea de automoldeamiento donde se emparejó la presentación de una palanca con la entrega de comida. Los resultados mostraron que la administración crónica tuvo un efecto de mejora temporal en el palanqueo (sign tracking) y el sesgo de respuesta. La nicotina crónica también aumentó la expresión de FosB/DFosB en el núcleo accumbens y la corteza orbitofrontal específicamente en ratas que se sometieron a entrenamiento conductual. Estos hallazgos sugieren que la nicotina puede potenciar los cambios plásticos mediados por el factor de transcripción FosB/DFosB en estructuras cerebrales claves para la saliencia de incentivo. (Texto tomado de la fuente)
dc.description.abstractCurrent research has highlighted the role of associative learning in addiction. Environmental cues associated through pavlovian processes with appetitive stimuli such as a drug can acquire an incentive salience value, becoming more attractive and facilitating drug-seeking behavior and relapse. The assignment of incentive salience can vary according to the phenotype of the subjects (goal trackers or sign trackers). Although for both phenotypes the conditioned stimulus (CS) can acquire predictive value over the unconditioned stimulus, only for the sign trackers the CS acquires incentive salience. Consistently, it has been reported that incentive value of cues associated with natural reinforcers such as food or water can be amplified by nicotine administration. Using 61 male Wistar rats, the present study aimed to evaluate the effects of chronic nicotine administration on the acquisition of an autoshaping task and FosB/DFosB expression in brain areas related to incentive salience. Results showed that chronic administration had a temporary enhancing effect on sign tracking and response bias. Chronic nicotine also increased FosB/DFosB expression in the nucleus accumbens and orbitofrontal cortex specifically for rats undergoing behavioral training. These findings suggest that nicotine may potentiate plastic changes mediated by the FosB/DFosB transcription factor in brain structures important for incentive salience processes.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Humanas - Maestría en Psicología
dc.publisherDepartamento de Psicología
dc.publisherFacultad de Ciencias Humanas
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlajaji, M., Lazenka, M. F., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032
dc.relationAlkondon, M., Pereira, E. F., Eisenberg, H. M., & Albuquerque, E. X. (1999). Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(7), 2693–2705. https://doi.org/10.1523/JNEUROSCI.19-07-02693.1999
dc.relationAngelyn, H., Loney, G. C., & Meyer, P. J. (2021). Nicotine Enhances Goal-Tracking in Ethanol and Food Pavlovian Conditioned Approach Paradigms. Frontiers in neuroscience, 15, 561766. https://doi.org/10.3389/fnins.2021.561766
dc.relationBaeg, E., Jedema, H. P., & Bradberry, C. W. (2020). Orbitofrontal cortex is selectively activated in a primate model of attentional bias to cocaine cues. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 45(4), 675–682. https://doi.org/10.1038/s41386-019-0499-0
dc.relationBalfour D.J.K. (2015) The Role of Mesoaccumbens Dopamine in Nicotine Dependence. en: Balfour D., Munafò M. (eds) The Neuropharmacology of Nicotine Dependence. Current Topics in Behavioral Neurosciences, vol 24 (pp. 55-98). Springer, Cham. https://doi.org/10.1007/978-3-319-13482-6_3
dc.relationBenavides, D. R., Quinn, J. J., Zhong, P., Hawasli, A. H., DiLeone, R. J., Kansy, J. W., Olausson, P., Yan, Z., Taylor, J. R., & Bibb, J. A. (2007). Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(47), 12967–12976. https://doi.org/10.1523/JNEUROSCI.4061-07.2007
dc.relationBesheer, J., & Bevins, R. A. (2003). Impact of nicotine withdrawal on novelty reward and related behaviors. Behavioral Neuroscience, 117(2), 327–340. https://doi.org/10.1037/0735-7044.117.2.327
dc.relationBerridge, K. C. (2000). Reward learning: Reinforcement, incentives, and expectations. Psychology of Learning and Motivation, 40, 223–278. https://doi.org/10.1016/S0079-7421(00)80022-5
dc.relationBerridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain research. Brain research reviews, 28(3), 309–369. https://doi.org/10.1016/s0165-0173(98)00019-8
dc.relationBevins, R. A., & Palmatier, M. I. (2004). Extending the role of associative learning processes in nicotine addiction. Behavioral and cognitive neuroscience reviews, 3(3), 143–158. https://doi.org/10.1177/1534582304272005
dc.relationBibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., & Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410(6826), 376–380. https://doi.org/10.1038/35066591
dc.relationBibb J. A. (2003). Role of Cdk5 in neuronal signaling, plasticity, and drug abuse. Neuro-Signals, 12(4-5), 191–199. https://doi.org/10.1159/000074620
dc.relationBindra D. (1974). A motivational view of learning, performance, and behavior modification. Psychological review, 81(3), 199–213. https://doi.org/10.1037/h0036330
dc.relationBindra, D. (1978). How adaptive behavior is produced: A perceptual-motivational alternative to response reinforcements. Behavioral and Brain Sciences, 1(1), 41-52. doi:10.1017/S0140525X00059380
dc.relationBlundell, P., Hall, G., & Killcross, S. (2003). Preserved sensitivity to outcome value after lesions of the basolateral amygdala. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(20), 7702–7709. https://doi.org/10.1523/JNEUROSCI.23-20-07702.2003
dc.relationBoakes, R. A. (1977). Performance on learning to associate a stimulus with positive reinforcement. Operant-pavlovian interactions. In H. David & H. M. B. Hurwitz (Eds.), Operant-Pavlovian interactions (pp. 67-101). Hillsdale, NJ: Erlbaum
dc.relationBolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79(5), 394–409. https://doi.org/10.1037/h0033120
dc.relationBrody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., Ho, M. L., Saxena, S., Baxter, L. R., Jr, Madsen, D., & Jarvik, M. E. (2002). Brain metabolic changes during cigarette craving. Archives of general psychiatry, 59(12), 1162–1172. https://doi.org/10.1001/archpsyc.59.12.1162
dc.relationBrown, P. L., & Jenkins, H. M. (1968). AUTO‐SHAPING OF THE PIGEON'S KEY‐PECK 1. Journal of the experimental analysis of behavior, 11(1), 1-8.
dc.relationBrown, R.W., & Kolb, B. (2001). Nicotine sensitization increases dendritic length and spine density in the nucleus accumbens and cingulate cortex. Brain Research, 899, 94-100. https://doi.org/10.1016/S0006-8993(01)02201-6
dc.relationBrynildsen, J. K., Najar, J., Hsu, L. M., Vaupel, D. B., Lu, H., Ross, T. J., Yang, Y., & Stein, E. A. (2016). A novel method to induce nicotine dependence by intermittent drug delivery using osmotic minipumps. Pharmacology, biochemistry, and behavior, 142, 79–84. https://doi.org/10.1016/j.pbb.2015.12.010
dc.relationCaggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., Chaudhri, N., & Sved, A. F. (2009). The role of nicotine in smoking: a dual-reinforcement model. Nebraska Symposium on Motivation., 55, 91–109. https://doi.org/10.1007/978-0-387-78748-0_6
dc.relationCagniard, B., Balsam, P. D., Brunner, D., & Zhuang, X. (2006). Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 31(7), 1362–1370. https://doi.org/10.1038/sj.npp.1300966
dc.relationCardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002a). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and biobehavioral reviews, 26(3), 321–352. https://doi.org/10.1016/s0149-7634(02)00007-6
dc.relationCardinal, R. N., Parkinson, J. A., Lachenal, G., Halkerston, K. M., Rudarakanchana, N., Hall, J., Morrison, C. H., Howes, S. R., Robbins, T. W., & Everitt, B. J. (2002b). Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behavioral neuroscience, 116(4), 553–567. https://doi.org/10.1037//0735-7044.116.4.553
dc.relationChang, S. E., Wheeler, D. S., & Holland, P. C. (2012a). Effects of lesions of the amygdala central nucleus on autoshaped lever pressing. Brain research, 1450, 49–56. https://doi.org/10.1016/j.brainres.2012.02.029
dc.relationChang, S. E., Wheeler, D. S., & Holland, P. C. (2012b). Roles of nucleus accumbens and basolateral amygdala in autoshaped lever pressing. Neurobiology of learning and memory, 97(4), 441–451. https://doi.org/10.1016/j.nlm.2012.03.008
dc.relationChang S. E. (2014). Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning. Behavioural brain research, 273, 52–56. https://doi.org/10.1016/j.bbr.2014.07.029
dc.relationChen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-related antigens: stable variants of deltaFosB induced in brain by chronic treatments. The Journal of neuroscience: the official journal of the Society for Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997
dc.relationChudasama, Y., & Robbins, T. W. (2003). Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. Journal of Neuroscience, 23(25), 8771-878. https://doi.org/10.1523/JNEUROSCI.23-25-08771.2003
dc.relationClark, J. J., Collins, A. L., Sanford, C. A., & Phillips, P. E. (2013). Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(8), 3526–3532. https://doi.org/10.1523/JNEUROSCI.5119-12.2013
dc.relationClaus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013). Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 38(12), 2363–2372. https://doi.org/10.1038/npp.2013.134
dc.relationCorbit, L. H., & Balleine, B. W. (2005). Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25(4), 962–970. https://doi.org/10.1523/JNEUROSCI.4507-04.2005
dc.relationCorrigall, W. A., & Coen, K. M. (1989). Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology, 99, 473-478. https://doi.org/10.1007/BF00589894
dc.relationCosta, D. S., & Boakes, R. A. (2009). Context blocking in rat autoshaping: Sign-tracking versus goal-tracking. Learning and Motivation, 40(2), 178-185. https://doi.org/10.1016/j.lmot.2008.11.001
dc.relationDandekar, M. P., Nakhate, K. T., Kokare, D. M., & Subhedar, N. K. (2011). Effect of nicotine on feeding and body weight in rats: involvement of cocaine- and amphetamine-regulated transcript peptide. Behavioural brain research, 219(1), 31–38. https://doi.org/10.1016/j.bbr.2010.12.007
dc.relationDani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, biochemistry, and behavior, 70(4), 439–446. https://doi.org/10.1016/s0091-3057(01)00652-9
dc.relationDao, J. M., McQuown, S. C., Loughlin, S. E., Belluzzi, J. D., & Leslie, F. M. (2011). Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism. Neuropsychopharmacology, 36(7), 1319–1331. https://doi.org/10.1038/npp.2011.8
dc.relationDay, J. J., Roitman, M. F., Wightman, R. M., & Carelli, R. M. (2007). Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nature neuroscience, 10(8), 1020–1028. https://doi.org/10.1038/nn1923
dc.relationDi Chiara, G., Acquas, E., & Carboni, E. (1992). Drug motivation and abuse: a neurobiological perspective. Annals of the New York Academy of Sciences, 654, 207–219. https://doi.org/10.1111/j.1749-6632.1992.tb25969.x
dc.relationDonny, E.C., Caggiula, A.R., Knopf, S. et al. Nicotine self-administration in rats. Psychopharmacology, 122, 390–394 (1995). https://doi.org/10.1007/BF02246272
dc.relationEhlinger, D. G., Bergstrom, H. C., Burke, J. C., Fernandez, G. M., McDonald, C. G., & Smith, R. F. (2016). Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. Brain structure & function, 221(1), 133–145. https://doi.org/10.1007/s00429-014-0897-3
dc.relationEhlinger, D. G., Burke, J. C., McDonald, C. G., Smith, R. F., & Bergstrom, H. C. (2017). Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons. Neuroscience, 356, 242–254. https://doi.org/10.1016/j.neuroscience.2017.05.036
dc.relationEhrlich, M. E., Sommer, J., Canas, E., & Unterwald, E. M. (2002). Periadolescent mice show enhanced DeltaFosB upregulation in response to cocaine and amphetamine. The Journal of neuroscience: the official journal of the Society for Neuroscience, 22(21), 9155–9159. https://doi.org/10.1523/JNEUROSCI.22-21-09155.2002
dc.relationFaure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040
dc.relationFlagel, S. B., Watson, S. J., Robinson, T. E., & Akil, H. (2007). Individual differences in the propensity to approach signals vs goals promote different adaptations in the dopamine system of rats. Psychopharmacology, 191(3), 599-607. https://doi.org/10.1007/s00213-006-0535-8
dc.relationFlagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56, 139–148. https://doi.org/10.1016/j.neuropharm.2008.06.027
dc.relationFlagel, S. B., Robinson, T. E., Clark, J. J., Clinton, S. M., Watson, S. J., Seeman, P., Phillips, P. E., & Akil, H. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 35(2), 388–400. https://doi.org/10.1038/npp.2009.142
dc.relationFlagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H., & Robinson, T. E. (2011a). A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience, 196, 80–96. https://doi.org/10.1016/j.neuroscience.2011.09.004
dc.relationFlagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., Akers, C. A., Clinton, S. M., Phillips, P. E., & Akil, H. (2011b). A selective role for dopamine in stimulus-reward learning. Nature, 469(7328), 53–57. https://doi.org/10.1038/nature09588
dc.relationFraser, K. M., & Janak, P. H. (2017). Long-lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to sign-tracking. The European journal of neuroscience, 46(4), 2047–2055. https://doi.org/10.1111/ejn.13642
dc.relationFuchs, R. A., Evans, K. A., Parker, M. P., & See, R. E. (2004). Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. The Journal of neuroscience: the official journal of the Society for Neuroscience, 24(29), 6600–6610. https://doi.org/10.1523/JNEUROSCI.1924-04.2004
dc.relationFudala, P. J., & Iwamoto, E. T. (1986). Further studies on nicotine-induced conditioned place preference in the rat. Pharmacology Biochemistry & Behavior, 25, 1041-1049. https://doi.org/10.1016/0091-3057(86)90083-3
dc.relationFujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846(1), 137–143. https://doi.org/10.1016/S0006-8993(99)01982-4
dc.relationGallagher, M., Graham, P. W., & Holland, P. C. (1990). The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. Journal of Neuroscience, 10(6), 1906-1911.
dc.relationGallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19(15), 6610-6614. https://doi.org/10.1523/JNEUROSCI.19-15-06610.1999
dc.relationGotti, C., Clementi, F., Fornari, A., Gaimarri, A., Guiducci, S., Manfredi, I., Moretti, M., Pedrazzi, P., Pucci, L., & Zoli, M. (2009). Structural and functional diversity of native brain neuronal nicotinic receptors. Biochemical Pharmacology, 78(7), 703–711. https://doi.org/10.1016/j.bcp.2009.05.024
dc.relationGroshek, F., Kerfoot, E., McKenna, V., Polackwich, A. S., Gallagher, M., & Holland, P. C. (2005). Amygdala Central Nucleus Function Is Necessary for Learning, but Not Expression, of Conditioned Auditory Orienting. Behavioral Neuroscience, 119(1), 202–212. https://doi.org/10.1037/0735-7044.119.1.202
dc.relationGuillem, K., & Ahmed, S. H. (2016). Proportion of cocaine-coding neurons in the orbitofrontal cortex determines individual drug preferences. bioRxiv, 050872. https://doi.org/10.1101/050872
dc.relationHall, J., Parkinson, J. A., Connor, T. M., Dickinson, A., & Everitt, B. J. (2001). Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. The European journal of neuroscience, 13(10), 1984–1992. https://doi.org/10.1046/j.0953-816x.2001.01577.x
dc.relationHart G., Balleine B. (2017) Medial Striatum. In: Vonk J., Shackelford T. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-47829-6_1288-1
dc.relationHatfield, T., Han, J. S., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. Journal of Neuroscience, 16(16), 5256-5265
dc.relationHearst, E., & Jenkins, H. M. (1974). Sign-tracking: The stimulus-reinforcer relation and directed action. Austin: Psychonomic Society
dc.relationHolland P. C. (2016). Enhancing second-order conditioning with lesions of the basolateral amygdala. Behavioral neuroscience, 130(2), 176–181. https://doi.org/10.1037/bne0000129
dc.relationHutcheson, D. M., & Everitt, B. J. (2003). The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Annals of the New York Academy of Sciences, 1003, 410–411. https://doi.org/10.1196/annals.1300.038
dc.relationKandel, E. R., & Kandel, D. B. (2014). Shattuck Lecture. A molecular basis for nicotine as a gateway drug. The New England journal of medicine, 371(10), 932–943. https://doi.org/10.1056/NEJMsa1405092
dc.relationKeefer, S. E., Gyawali, U., & Calu, D. J. (2021). Choose your path: Divergent basolateral amygdala efferents differentially mediate incentive motivation, flexibility and decision-making. Behavioural Brain Research, 409, 113306. https://doi.org/10.1016/j.bbr.2021.113306
dc.relationKelz, M. B., Chen, J., Carlezon, W. A., Jr, Whisler, K., Gilden, L., Beckmann, A. M., Steffen, C., Zhang, Y. J., Marotti, L., Self, D. W., Tkatch, T., Baranauskas, G., Surmeier, D. J., Neve, R. L., Duman, R. S., Picciotto, M. R., & Nestler, E. J. (1999). Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272–276. https://doi.org/10.1038/45790
dc.relationKelz, M. B., & Nestler, E. J. (2000). deltaFosB: a molecular switch underlying long-term neural plasticity. Current opinion in neurology, 13(6), 715–720. https://doi.org/10.1097/00019052-200012000-00017
dc.relationKolokotroni, K. Z., Rodgers, R. J., & Harrison, A. A. (2012). Effects of chronic nicotine, nicotine withdrawal and subsequent nicotine challenges on behavioural inhibition in rats. Psychopharmacology, 219, 453-468. https://doi.org/10.1007/s00213-011-2558-z
dc.relationLevin, E. D., Morgan, M. M., Galvez, C., & Ellison, G. D. (1987). Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiology & behavior, 39(4), 441–444. https://doi.org/10.1016/0031-9384(87)90370-2
dc.relationLevine, A., Huang, Y., Drisaldi, B., Griffin, E. A., Jr, Pollak, D. D., Xu, S., Yin, D., Schaffran, C., Kandel, D. B., & Kandel, E. R. (2011). Molecular mechanism for a gateway drug: epigenetic changes initiated by nicotine prime gene expression by cocaine. Science translational medicine, 3(107), 107ra109. https://doi.org/10.1126/scitranslmed.3003062
dc.relationLoney, G. C., Angelyn, H., Cleary, L. M., & Meyer, P. J. (2019). Nicotine Produces a High-Approach, Low-Avoidance Phenotype in Response to Alcohol-Associated Cues in Male Rats. Alcoholism, clinical and experimental research, 43(6), 1284–1295. https://doi.org/10.1111/acer.14043
dc.relationMacpherson, T., & Hikida, T. (2018). Nucleus Accumbens Dopamine D1-Receptor-Expressing Neurons Control the Acquisition of Sign-Tracking to Conditioned Cues in Mice. Frontiers in neuroscience, 12, 418. https://doi.org/10.3389/fnins.2018.00418
dc.relationMalin, D. H., Lake, J. R., Newlin-Maultsby, P., Roberts, L. K., Lanier, J. G., Carter, V. A., Cunningham, J. S., & Wilson, O. B. (1992). Rodent model of nicotine abstinence syndrome. Pharmacology, Biochemistry Behavior, 43(3), 779–784. https://doi.org/10.1016/0091-3057(92)90408-8
dc.relationMarttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/DeltaFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014
dc.relationMatta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., Craig, C. R., Collins, A. C., Damaj, M. I., Donny, E. C., Gardiner, P. S., Grady, S. R., Heberlein, U., Leonard, S. S., Levin, E. D., Lukas, R. J., Markou, A., Marks, M. J., McCallum, S. E., Parameswaran, N., … Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190(3), 269–319. https://doi.org/10.1007/s00213-006-0441-0
dc.relationMcDonald, C. G., Dailey, V. K., Bergstrom, H. C., Wheeler, T. L., Eppolito, A. K., Smith, L. N., & Smith, R. F. (2005). Periadolescent nicotine administration produces enduring changes in dendritic morphology of medium spiny neurons from nucleus accumbens. Neuroscience letters, 385(2), 163–167. https://doi.org/10.1016/j.neulet.2005.05.041
dc.relationMcDonald, C. G., Eppolito, A. K., Brielmaier, J. M., Smith, L. N., Bergstrom, H. C., Lawhead, M. R., & Smith, R. F. (2007). Evidence for elevated nicotine-induced structural plasticity in nucleus accumbens of adolescent rats. Brain research, 1151, 211–218. https://doi.org/10.1016/j.brainres.2007.03.019
dc.relationMcGehee, D. S., Heath, M. J., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269(5231), 1692–1696. https://doi.org/10.1126/science.7569895
dc.relationMeyer, P. J., Lovic, V., Saunders, B. T., Yager, L. M., Flagel, S. B., Morrow, J. D., & Robinson, T. E. (2012). Quantifying individual variation in the propensity to attribute incentive salience to reward cues. PloS one, 7(6), e38987. https://doi.org/10.1371/journal.pone.0038987
dc.relationMichalak, A., & Budzyńska, B. (2019). Nicotine and Dopamine DA1 Receptor Pharmacology. In: Preedy, V. R. (Ed.). Neuroscience of Nicotine: Mechanisms and Treatment. Academic Press
dc.relationMorgan, J. I., & Curran, T. (1995). Immediate-early genes: ten years on. Trends in Neurosciences, 18(2), 66–67
dc.relationMuller, D. L., & Unterwald, E. M. (2005). D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration. The Journal of pharmacology and experimental therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410
dc.relationMurrin, L. C., Ferrer, J. R., Wanyun, Z., & Haley, N. J. (1987). Nicotine administration to rats: methodological considerations. Life Sciences, 40, 1699-1708. https://doi.org/10.1016/0024-3205(87)90020-8
dc.relationNaeem, M., & White, N. M. (2016). Parallel learning in an autoshaping paradigm. Behavioral neuroscience, 130(4), 376–392. https://doi.org/10.1037/bne0000154
dc.relationNaeem, M. (2016). Learning processes in autoshaping and conditioned cue preference. [PhD Thesis, McGill University] (Canada). Recuperado de: https://www.bac-lac.gc.ca/eng/services/theses/Pages/item.aspx?idNumber=973735010
dc.relationNakhate, K. T., Dandekar, M. P., Kokare, D. M., & Subhedar, N. K. (2009). Involvement of neuropeptide Y Y(1) receptors in the acute, chronic and withdrawal effects of nicotine on feeding and body weight in rats. European journal of pharmacology, 609(1-3), 78–87. https://doi.org/10.1016/j.ejphar.2009.03.008
dc.relationNestler, E. J., Barrot, M., & Self, D. W. (2001). DeltaFosB: a sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698
dc.relationNestler E. J. (2008). Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3245–3255. https://doi.org/10.1098/rstb.2008.0067
dc.relationNorrholm, S. D., Bibb, J. A., Nestler, E. J., Ouimet, C. C., Taylor, J. R., & Greengard, P. (2003). Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience, 116(1), 19–22. https://doi.org/10.1016/s0306-4522(02)00560-2
dc.relationOlausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology, 28, 1264-1271. https://doi.org/10.1038/sj.npp.1300173
dc.relationOlausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology, 171, 173-178. https://doi.org/10.1007/s00213-003-1575-y
dc.relationOlausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology, 173, 98-104. https://doi.org/10.1007/s00213-003-1702-9
dc.relationOlausson, P., Jentsch, J. D., Tronson, N., Neve, R. L., Nestler, E. J., & Taylor, J. R. (2006). ΔFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. Journal of Neuroscience, 26(36), 9196-9204. https://doi.org/10.1523/JNEUROSCI.1124-06.2006
dc.relationOstlund, S. B., & Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(18), 4819–4825. https://doi.org/10.1523/JNEUROSCI.5443-06.2007
dc.relationOverby, P. F., Daniels, C. W., Del Franco, A., Goenaga, J., Powell, G. L., Gipson, C. D., & Sanabria, F. (2018). Effects of nicotine self-administration on incentive salience in male Sprague Dawley rats. Psychopharmacology, 235(4), 1121–1130. https://doi.org/10.1007/s00213-018-4829-4
dc.relationPalmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., Liu, X., Booth, S., Gharib, M., Craven, L., & Sved, A. F. (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184, 391-400. https://doi.org/10.1007/s00213-005-0183-4
dc.relationPalmatier, M. I., Liu, X., Matteson, G. L., Donny, E. C., Caggiula, A. R., & Sved, A. F. (2007). Conditioned reinforcement in rats established with self-administered nicotine and enhanced by noncontingent nicotine. Psychopharmacology, 195(2), 235-243. https://doi.org/10.1007/s00213-007-0897-6
dc.relationPalmatier, M. I., Marks, K. R., Jones, S. A., Freeman, K. S., Wissman, K. M., & Sheppard, A. B. (2013). The effect of nicotine on sign-tracking and goal-tracking in a Pavlovian conditioned approach paradigm in rats. Psychopharmacology, 226, 247-259. https://doi.org/10.1007/s00213-012-2892-9
dc.relationPanayi, M. C., & Killcross, S. (2018). Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits. eLife, 7, e37357. https://doi.org/10.7554/eLife.37357
dc.relationPanayi, M. C., & Killcross, S. (2021). The role of the rodent lateral orbitofrontal cortex in simple Pavlovian cue-outcome learning depends on training experience. Cerebral Cortex Communications, 2(1), tgab010. https://doi.org/10.1093/texcom/tgab010
dc.relationParkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W., & Everitt, B. J. (1999). Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. Neuroscience, 19(6), 2401–2411. https://doi.org/10.1523/JNEUROSCI.19-06-02401.1999
dc.relationParkinson, J. A., Robbins, T. W., & Everitt, B. J. (2000). Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. The European journal of neuroscience, 12(1), 405–413. https://doi.org/10.1046/j.1460-9568.2000.00960.x
dc.relationPaxinos, G. and Watson, C. (2007) The Rat Brain in Stereotaxic Coordinates. 6th Edition, Academic Press, San Diego
dc.relationPeterson, G. B., Ackil, J. E., Frommer, G. P., & Hearst, E. S. (1972). Conditioned approach and contact behavior toward signals for food or brain-stimulation reinforcement. Science, 177(4053), 1009–1011. https://doi.org/10.1126/science.177.4053.1009
dc.relationPhillips, G. D., Setzu, E., Vugler, A., & Hitchcott, P. K. (2003). Immunohistochemical assessment of mesotelencephalic dopamine activity during the acquisition and expression of Pavlovian versus instrumental behaviours. Neuroscience, 117(3), 755-767. https://doi.org/10.1016/s0306-4522(02)00799-6
dc.relationPicciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006
dc.relationPich, E. M., Pagliusi, S. R., Tessari, M., Talabot-Ayer, D., van Huijsduijnen, R. H., & Chiamulera, C. (1997). Common neural substrates for the addictive properties of nicotine and cocaine. Science, 275(5296), 83-86. https://doi.org/10.1126/science.275.5296.83
dc.relationPitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. The Journal of neuroscience: the official journal of the Society for Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/JNEUROSCI.4881-12.2013
dc.relationPichon-Riviere, A., Alcaraz, A., Palacios, A., Rodríguez, B., Reynales-Shigematsu, L. M., Pinto, M., Castillo-Riquelme, M., Peña, E., Osorio, D. I., Huayanay, L., Loza, C., de Miera-Juárez, B. S., Gallegos-Rivero, V., De La Puente, C., Navia-Bueno, M. P., Caporale, J., Roberti, J., Virgilio, A., Augustovski, F., & Bardach, A. (2020). The health and economic burden of smoking in 12 Latin American countries and the potential effect of increasing tobacco taxes: an economic modelling study. The Lancet Global Health, 8(10), e1282-e1294. https://doi.org/10.1016/S2214-109X(20)30311-9
dc.relationRescorla, R. A., & Solomon, R. L. (1967). Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychological Review, 74(3), 151–182. https://doi.org/10.1037/h0024475
dc.relationRobinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain research. Brain research reviews, 18(3), 247–291. https://doi.org/10.1016/0165-0173(93)90013-p
dc.relationRobinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: some current issues. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1507), 3137–3146. https://doi.org/10.1098/rstb.2008.0093
dc.relationRobinson, T. E., Yager, L. M., Cogan, E. S., & Saunders, B. T. (2014). On the motivational properties of reward cues: Individual differences. Neuropharmacology, 76, 450–459. https://doi.org/10.1016/j.neuropharm.2013.05.040
dc.relationRowell, P. P., & Li, M. (1997). Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. Journal of Neurochemistry, 68(5), 1982–1989. https://doi.org/10.1046/j.1471-4159.1997.68051982.x
dc.relationRuffle J. K. (2014). Molecular neurobiology of addiction: what's all the (Δ)FosB about?. The American journal of drug and alcohol abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840
dc.relationSchaefer, G. J., & Michael, R. P. (1986). Task-specific effects of nicotine in rats. Intracranial self-stimulation and locomotor activity. Neuropharmacology, 25(2), 125–131. https://doi.org/10.1016/0028-3908(86)90033-x
dc.relationSchiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. The European journal of neuroscience, 21(6), 1703–1711. https://doi.org/10.1111/j.1460-9568.2005.04001.x
dc.relationSchoenbaum, G., & Shaham, Y. (2008). The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biological psychiatry, 63(3), 256–262. https://doi.org/10.1016/j.biopsych.2007.06.003
dc.relationSchoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nature reviews. Neuroscience, 10(12), 885–892. https://doi.org/10.1038/nrn2753
dc.relationSchoenbaum, G., Takahashi, Y., Liu, T. L., & McDannald, M. A. (2011). Does the orbitofrontal cortex signal value?. Annals of the New York Academy of Sciences, 1239, 87–99. https://doi.org/10.1111/j.1749-6632.2011.06210.x
dc.relationSerrano-Barroso, A., Vargas, J. P., Diaz, E., O'Donnell, P., & López, J. C. (2019). Sign and goal tracker rats process differently the incentive salience of a conditioned stimulus. PloS one, 14(9), e0223109. https://doi.org/10.1371/journal.pone.0223109
dc.relationSchultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288. https://doi.org/10.1146/annurev.neuro.28.061604.135722
dc.relationSoderstrom, K., Qin, W., Williams, H., Taylor, D. A., & McMillen, B. A. (2007). Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology, 191(4), 891–897. https://doi.org/10.1007/s00213-007-0744-9
dc.relationSparber, S. B., Bollweg, G. L., & Messing, R. B. (1991). Food deprivation enhances both autoshaping and autoshaping impairment by a latent inhibition procedure. Behavioural Processes, 23(1), 59–74. https://doi.org/10.1016/0376-6357(91)90106-A
dc.relationStringfield, S. J., Palmatier, M. I., Boettiger, C. A., & Robinson, D. L. (2017). Orbitofrontal participation in sign- and goal-tracking conditioned responses: Effects of nicotine. Neuropharmacology, 116, 208–223. https://doi.org/10.1016/j.neuropharm.2016.12.020
dc.relationStringfield, S. J., Madayag, A. C., Boettiger, C. A., & Robinson, D. L. (2019). Sex differences in nicotine-enhanced Pavlovian conditioned approach in rats. Biology of sex differences, 10(1), 37. https://doi.org/10.1186/s13293-019-0244-8
dc.relationTheeuwes, F., & Yum, S. I. (1976). Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals of biomedical engineering, 4(4), 343-353.
dc.relationTimberlake, W. (1986). Unpredicted food produces a mode of behavior that affects rats’ subsequent reactions to a conditioned stimulus: A behavior-system approach to “context blocking”. Animal Learning & Behavior, 14(3), 276-286. https://doi.org/10.3758/BF03200068
dc.relationToates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press
dc.relationTomie, A. (2018). Chapter 1: Introduction: The Role of Sign-Tracking in Drug Addiction. En Tomie, A. & Morrow, J. (Eds). Sign-Tracking and Drug Addiction. Maize Books. http://dx.doi.org/10.3998/mpub.10215070
dc.relationVersaggi, C. L., King, C. P., & Meyer, P. J. (2016). The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology, 233(15-16), 2985–2997. https://doi.org/10.1007/s00213-016-4341-7
dc.relationWallace, D. L., Vialou, V., Rios, L., Carle-Florence, T. L., Chakravarty, S., Kumar, A., Graham, D. L., Green, T. A., Kirk, A., Iñiguez, S. D., Perrotti, L. I., Barrot, M., DiLeone, R. J., Nestler, E. J., & Bolaños-Guzmán, C. A. (2008). The influence of DeltaFosB in the nucleus accumbens on natural reward-related behavior. The Journal of neuroscience: the official journal of the Society for Neuroscience, 28(41), 10272–10277. https://doi.org/10.1523/JNEUROSCI.1531-08.2008
dc.relationWerme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosB regulates wheel running. Journal of Neuroscience, 22(18), 8133-8138. https://doi.org/10.1523/JNEUROSCI.22-18-08133.2002
dc.relationWinstanley, C. A., LaPlant, Q., Theobald, D. E., Green, T. A., Bachtell, R. K., Perrotti, L. I., DiLeone, R. J., Russo, S. J., Garth, W. J., Self, D. W., & Nestler, E. J. (2007). DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(39), 10497–10507. https://doi.org/10.1523/JNEUROSCI.2566-07.2007
dc.relationWills, L., & Kenny, P. J. (2021). Addiction-related neuroadaptations following chronic nicotine exposure. Journal of neurochemistry, 157(5), 1652–1673. https://doi.org/10.1111/jnc.15356
dc.relationWonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20(2), 92–98. https://doi.org/10.1016/S0166-2236(96)10073-4
dc.relationXiong, M., Li, J., Ye, J. H., & Zhang, C. (2011). Upregulation of DeltaFosB by propofol in rat nucleus accumbens. Anesthesia and analgesia, 113(2), 259–264. https://doi.org/10.1213/ANE.0b013e318222af17
dc.relationYager, L. M., & Robinson, T. E. (2013). A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue. Psychopharmacology, 226(2), 217–228. https://doi.org/10.1007/s00213-012-2890-y
dc.relationYager, L. M., & Robinson, T. E. (2015). Individual variation in the motivational properties of a nicotine cue: Sign-trackers vs. Goal-trackers. Psychopharmacology, 232(17), 3149–3160. https://doi.org/10.1007/s00213-015-3962-6
dc.relationYager, L. M., Pitchers, K. K., Flagel, S. B., & Robinson, T. E. (2015). Individual variation in the motivational and neurobiological effects of an opioid cue. Neuropsychopharmacology, 40(5), 1269-1277. https://doi.org/10.1038/npp.2014.314
dc.relationZhang, D., Zhang, L., Lou, D. W., Nakabeppu, Y., Zhang, J., & Xu, M. (2002). The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. Journal of neurochemistry, 82(6), 1453–1464. https://doi.org/10.1046/j.1471-4159.2002.01089.x
dc.relationZhang, T., Zhang, L., Liang, Y., Siapas, A. G., Zhou, F. M., & Dani, J. A. (2009). Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(13), 4035–4043. https://doi.org/10.1523/JNEUROSCI.0261-09.2009
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfectos farmacológicos y comportamentales de la administración crónica de nicotina en una tarea de automoldeamiento
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución