dc.contributorUniversidade Federal da Paraíba (UFPB)
dc.contributorUniversidade Federal do Ceará (UFC)
dc.contributorUniversidade Federal Rural de Pernambuco (UFRPE)
dc.contributorUniv Presbiteriana Mackenzie
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorInst Biol Campinas
dc.contributorUniversidade Federal de Pelotas (UFPEL)
dc.date.accessioned2014-05-20T15:31:05Z
dc.date.available2014-05-20T15:31:05Z
dc.date.created2014-05-20T15:31:05Z
dc.date.issued2012-05-01
dc.identifierPesticide Biochemistry and Physiology. San Diego: Academic Press Inc. Elsevier B.V., v. 103, n. 1, p. 15-22, 2012.
dc.identifier0048-3575
dc.identifierhttp://hdl.handle.net/11449/40321
dc.identifier10.1016/j.pestbp.2012.02.003
dc.identifierWOS:000304569700003
dc.identifier8573195327542061
dc.description.abstractAcacia farnesiana lectin-like protein (AFAL) showed bacterioestatic effects against Xanthomonas axonopodis pv. passiflorae (Gram-negative) and Clavibacter michiganensis michiganensis (Gram-positive), with the latter being more sensitive. This effect is probably due to the ability of AFAL to interact with the bacterial cell wall where we observed that AFAL induced macroscopic change. The maximum bacterial growth inhibition was approximately 78% when incubated with Gram-negative strains, and as high as 92% percent for the Gram-positive one. The antibacterial effect of flavonoids (rutin, quercetin and morin) was also observed using low concentrations against both bacterial strains. Prior incubation of both with AFAL at high concentrations increases the inhibitory effect of flavonoids on bacterial growth. The potential use of AFAL as a control agent against the root-knot nematode Meloidogyne incognita was investigated as well, showing anti-nematode properties involving both egg hatching and motility. In the juvenile second-stage, AFAL showed reduction in larval mobility when measured against a control group. The results suggest that AFAL is effective against M. incognita and could be used as a component of integrated pest management programs. These data also suggest that lectins probably play a role in plant defense not only against invertebrate phytopathogens, herbivores and fungi but also against bacteria. (C) 2012 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc. Elsevier B.V.
dc.relationPesticide Biochemistry and Physiology
dc.relation3.440
dc.relation1,043
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectAcacia farnesiana
dc.subjectLectin
dc.subjectXanthomonas
dc.subjectClavibacter
dc.subjectMeloidogyne incognita
dc.titleEffects of a lectin-like protein isolated from Acacia farnesiana seeds on phytopathogenic bacterial strains and root-knot nematode
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución