Artículo de revista
Mitochondria, myocardial remodeling, and cardiovascular disease
Date
2012Registration in:
Current Hypertension Reports, Volumen 14, Issue 6, 2012, Pages 532-539
15226417
15343111
10.1007/s11906-012-0305-4
Author
Verdejo, Hugo
Campo, Andrea del
Troncoso, Rodrigo
Gutiérrez, Tomás
Toro, Barbra
Quiroga, Clara
Pedrozo Cibils, Zully
Muñoz, Juan
García, Lorena
Castro, Pablo
Lavandero González, Sergio
Institutions
Abstract
The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca2+ buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca2+ handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.
Related items
Showing items related by title, author, creator and subject.
-
Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake
Del Campo, Andrea; Parra, Valentina; Vásquez Trincado, César Alonso; Gutiérrez, Tomás; Morales, Pablo E.; López Crisosto, Camila; Bravo Sagua, Roberto; Navarro Márquez, Mario F.; Verdejo, Hugo E.; Contreras Ferrat, Ariel Eduardo; Troncoso, Rodrigo; Chiong Lay, Mario; Lavandero González, Sergio (2014)Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ... -
Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease
Pérez, María José; Ponce, Daniela P.; Aranguiz, Alejandra; Behrens Pellegrino, María Isabel; Quintanilla, Rodrigo A. (Elsevier B.V., 2018)© 2018 The Authors In the last few decades, many reports have suggested that mitochondrial function impairment is a hallmark of Alzheimer's disease (AD). Although AD is a neurodegenerative disorder, mitochondrial damage ...