dc.contributorRiganti, Chiara
dc.contributorGarzón, Ruth
dc.creatorPinzon-Daza, Martha L.
dc.date.accessioned2014-11-04T17:25:43Z
dc.date.available2014-11-04T17:25:43Z
dc.date.created2014-11-04T17:25:43Z
dc.date.issued2014
dc.identifierhttp://repository.urosario.edu.co/handle/10336/8992
dc.identifierhttps://doi.org/10.48713/10336_8992
dc.description.abstractMalignant gliomas represent one of the most aggressive forms of Central Nervous System (CNS) tumors. According to the WHO classification of brain tumors, astrocytomas have been categorized into four grades, determined by the underlying pathology. Malignant (or highgrade) gliomas include anaplastic glioma (WHO grade III) as well as glioblastoma multiforme (GBM; WHO grade IV). These are the most aggressive brain tumors with the worst prognosis (1). The therapeutic management of CNS tumors is based on surgery, radiotherapy and chemotherapy, depending on the characteristics of the tumor, the clinical stage and age (2), (3), however none of the standard treatments is completely safe and compatible with an acceptable quality of life (3), (4). Chemotherapy is the first choice in disseminated tumors, like invasive glioblastoma, high-risk medulloblastoma or multiple metastasis, but the prognosis in these patients is very poor (2),(3). New targeted therapies (2), anti-angiogenic therapies (3), (4) or gene therapies show a real benefit only in limited groups of patients with known specific molecular defects (4). Thereby, the development of new pharmacological therapies for brain tumors is mandatory. Malignant gliomas are frequently chemoresistant and this resistance seems to depend on at least two mechanisms: first, the poor penetration of many anticancer drugs across the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB) and the blood-tumor barrier (BTB), due to their interaction with several ATP-binding cassette (ABC) drug efflux transporters that are overexpressed by the endothelial or epithelial cells of these barriers. Second, ABC drug efflux transporters in tumor cells confer multidrug resistance (MDR) on several other solid tumors; they are present on CNS tumors too and their role in gliomas is under investigation (5). Drug delivery across the blood-brain barrier (BBB) is one of the vital problems in targeted therapy treatments. Recent studies have shown that some small molecules used in these therapies are substrates of Pglycoprotein (Pgp), as well as other efflux pumps like multidrug resistance-related proteins (MRPs) and breast-cancer resistance related protein (BCRP), which extrude several anticancer drugs and will not allow drugs to reach the tumor (1). DOXOrubicin (DOXO), a drug widely used in anti-cancer therapy, is a substrate of Pgp and BCRP, and it is very effective to attack the vitro brain tumor cells, but has a limited clinical use for its low delivery across BBB and the resistance of tumors. On the other hand BBB cells and brain tumor cells also have surface proteins, such as Low Density Lipoprotein Receptor (LDLR), which could be used as a therapeutic target. The importance of this study is based on the generation of therapeutical strategies to promote the passage of drugs through the BBB and the intratumoral accumulation, and at the same time, on the analysis of cellular mechanisms that induce increased expression of ABC transporters, to be used as therapeutic targets. In this work we demonstrated that the use of a new strategy based on the "Trojan horse", which combines DOXOrubicin introduced into a liposome, could safeguards the drug to prevent its recognition by the ABC transporters in both the BBB and the tumor cells. The construction of liposome allowed using the LDLR receptor cells as docking receptor, ensuring the entrance through the BBB and into the tumor cells through a process of endocytosis. This mechanism was associated with the use of statins, anti-cholesterol drugs which favoured the expression of LDLR and decreased the activity of ABC transporters, increasing the efficiency of our Trojan horse. Accordingly, I demonstrated that the use of a new DOXOrubicin liposomal formulation mimicking LDLs, called ApolipoDOXO, further favors drug delivery through the BBB, overcoming the resistance of tumor and reducing the side effects of DOXOrubicin dose. In addition this strategy can be considered as a new strategy to increase the effectiveness of different drugs in several brain tumors and ensures high efficiency even in a hypoxic environment, characteristic of cancer cells, where the expression of Pgp transporter was increased. Taking advantage of another signaling pathway recognized as a modulator of Pgp activity this study presents not only the strategy of the Trojan horse, but also a second therapeutic proposal related to the use of Temozolomide plus DOXOrubicin. This strategy showed that temozolomide (TMZ) penetrated the BBB in a way involved the Wnt/GSK3/β-catenin signaling pathway, which modulates the expression of Pgp transporter. It was demonstrated that the TMZ reduces Wnt3 protein and mRNA allowing raising the hypothesis that this drug decreases Wnt3 gene transcription in BBB cells, decreasing β-catenin pathway activation by its phosphorylation, reducing β-catenin nuclear translocation and binding to the promoter of the mdr1 gene. Taking together the results of this study allowed the recognition of three basic mechanisms related to the down-regulation of Pgp and associated strategies: the first was the use of statins, which led to the transporter nitration decreasing its activity by NFκB pathway; the second one was based on the use of temozolomide, which by methylating Wnt3 gene reduces the activity of the β-catenin signaling pathway, decreasing the expression of Pgp transporter; the third one consisted on the cross-talk between the Wnt/GSK3/β-catenin axis and the Wnt/RhoA/RhoA kinase as a modulator of mdr1 transcription: we demonstrated that RhoA protein kinase promoted the activation of the protein PTB1, which by phosphorylating GSK3 induced phosphorylation of β-catenin, priming it for destruction by the proteasome, avoiding the binding to the promoter of the mdr1 gene and therefore reducing Pgp expression. In conclusion, the therapeutic startegies proposed in this work increased the cytotoxicity of tumour cells by increasing permeability not only in the BBB, but also in tumor barrier. Also, the "Trojan horse" strategy could be useful for the therapy of other diseases associated with the central nervous system. On the other hand, these studies indicate that recognition of mechanisms associated with the expression of ABC transporters could be a key tool in the development of new anti-cancer therapies.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherDoctorado en Ciencias Biomédicas
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.source1. Mercer RW, Tyler MA, Ulasov IV, Lesniak MS. Targeted therapies for malignant glioma: progress and potential. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2009;23(1):25-35. 2. Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A. Medulloblastoma: from molecular pathology to therapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(4):971-6. 3. Soffietti R, Ruda R. Neuro-oncology: new insights and advances in treatment. Lancet Neurol. 2008;7(1):14-6. 4. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110(1):13-24. 5. Decleves X, Amiel A, Delattre JY, Scherrmann JM. Role of ABC transporters in the chemoresistance of human gliomas. Curr Cancer Drug Targets. 2006;6(5):433-45. 6. Savage RE, Jr., Kanitz MH, Lotz WG, Conover D, Hennessey EM, Hanneman WH, et al. Changes in gene and protein expression in magnetic field-treated human glioma cells. Toxicology mechanisms and methods. 2005;15(2):115-20. 7. Tanaka Y, Fujii M, Saito T, Kawamori J. [Radiation therapy for brain tumors]. Nihon Igaku Hoshasen Gakkai Zasshi. 2004;64(7):387-93. 8. van Rij CM, Wilhelm AJ, Sauerwein WA, van Loenen AC. Boron neutron capture therapy for glioblastoma multiforme. Pharm World Sci. 2005;27(2):92-5. 9. Al-Waili NS, Butler GJ, Beale J, Abdullah MS, Hamilton RW, Lee BY, et al. Hyperbaric oxygen in the treatment of patients with cerebral stroke, brain trauma, and neurologic disease. Advances in therapy. 2005;22(6):659-78. 10. Zalutsky MR. Current status of therapy of solid tumors: brain tumor therapy. J Nucl Med. 2005;46 Suppl 1:151S-6S. 11. Al-Waili NS, Butler GJ. A combination of radiotherapy, nitric oxide and a hyperoxygenation sensitizing protocol for brain malignant tumor treatment. Med Hypotheses. 2007;68(3):528-37. 12. Heuer GG, Jackson EM, Magge SN, Storm PB. Surgical management of pediatric brain tumors. Expert Rev Anticancer Ther. 2007;7(12 Suppl):S61-8. 13. Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010;7:3. 14. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(23):5664-78. 15. Kamar FG, Posner JB. Brain metastases. Seminars in neurology. 2010;30(3):217-35. 16. Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today. 2002;7(1):5-7. 17. Pardridge WM. Blood-brain barrier biology and methodology. J Neurovirol. 1999;5(6):556-69. 18. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173-85. 19. Saunders NR, Ek CJ, Habgood MD, Dziegielewska KM. Barriers in the brain: a renaissance? Trends in neurosciences. 2008;31(6):279-86.
dc.source20. Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiology of disease. 2010;38(3):376-85. 21. Lichota J, Skjorringe T, Thomsen LB, Moos T. Macromolecular drug transport into the brain using targeted therapy. J Neurochem. 2010;113(1):1-13. 22. Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol. 2000;20(1):29-40. 23. Pinzon-Daza ML, Campia I, Kopecka J, Garzon R, Ghigo D, Riganti C. Nanoparticle- and liposome-carried drugs: new strategies for active targeting and drug delivery across bloodbrain barrier. Current drug metabolism. 2013;14(6):625-40. 24. Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, Woodard SM, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4- [(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino }methyl)-2-furyl]-4- quinazolinamine; GW572016). Drug Metab Dispos. 2009;37(2):439-42. 25. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55(1):3-29. 26. Eisenblatter T, Huwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res. 2003;971(2):221-31. 27. de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O. P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(21):6440-9. 28. Lagas JS, Fan L, Wagenaar E, Vlaming ML, van Tellingen O, Beijnen JH, et al. Pglycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(1):130-40. 29. Vlaming ML, Lagas JS, Schinkel AH. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev. 2009;61(1):14-25. 30. Lagas JS, van Waterschoot RA, van Tilburg VA, Hillebrand MJ, Lankheet N, Rosing H, et al. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(7):2344-51. 31. Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res. 2003;61:39-78. 32. Bauer M, Zeitlinger M, Karch R, Matzneller P, Stanek J, Jager W, et al. Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clinical pharmacology and therapeutics. 2012;91(2):227-33. 33. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98. 34. Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733-44. 35. Zhang Y, Han H, Elmquist WF, Miller DW. Expression of various multidrug resistanceassociated protein (MRP) homologues in brain microvessel endothelial cells. Brain Res. 2000;876(1-2):148-53. 36. Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM. Expression, upregulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res. 2004;64(9):3296-301.
dc.source37. Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther. 2011;336(1):223-33. 38. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATPdependent transporters. Nat Rev Cancer. 2002;2(1):48-58. 39. Van Luyn MJ, Muller M, Renes J, Meijer C, Scheper RJ, Nienhuis EF, et al. Transport of glutathione conjugates into secretory vesicles is mediated by the multidrug-resistance protein 1. Int J Cancer. 1998;76(1):55-62. 40. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxiainducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62(12):3387-94. 41. Moeller BJ, Dewhirst MW. HIF-1 and tumour radiosensitivity. Br J Cancer. 2006;95(1):1-5. 42. Yasuda H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide. 2008;19(2):205-16. 43. Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, Sawyer DB. Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol. 2008;26(22):3777-84. 44. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V. Anthracyclineinduced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61(1):154-71. 45. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727-41. 46. L'Ecuyer T, Horenstein MS, Thomas R, Vander Heide R. Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab. 2001;74(3):370-9. 47. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. 48. Weiss RB. The anthracyclines: will we ever find a better DOXOrubicin? Semin Oncol. 1992;19(6):670-86. 49. Markman M. Pegylated liposomal DOXOrubicin in the treatment of cancers of the breast and ovary. Expert opinion on pharmacotherapy. 2006;7(11):1469-74. 50. Andresen TL, Jensen SS, Jorgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res. 2005;44(1):68-97. 51. McNeil SE. Nanotechnology for the biologist. Journal of leukocyte biology. 2005;78(3):585-94. 52. Trapani A, Denora N, Iacobellis G, Sitterberg J, Bakowsky U, Kissel T. Methotrexateloaded chitosan- and glycol chitosan-based nanoparticles: a promising strategy for the administration of the anticancer drug to brain tumors. AAPS PharmSciTech. 2011;12(4):1302-11. 53. Kim HR, Kim IK, Bae KH, Lee SH, Lee Y, Park TG. Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Molecular pharmaceutics. 2008;5(4):622-31. 54. Owens DE, 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102.
dc.source55. Kratz F, Muller-Driver R, Hofmann I, Drevs J, Unger C. A novel macromolecular prodrug concept exploiting endogenous serum albumin as a drug carrier for cancer chemotherapy. J Med Chem. 2000;43(7):1253-6. 56. DeFeo-Jones D, Garsky VM, Wong BK, Feng DM, Bolyar T, Haskell K, et al. A peptide- DOXOrubicin 'prodrug' activated by prostate-specific antigen selectively kills prostate tumor cells positive for prostate-specific antigen in vivo. Nature medicine. 2000;6(11):1248-52. 57. Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of DOXOrubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release. 2006;116(3):275-84. 58. Miladi I, Duc GL, Kryza D, Berniard A, Mowat P, Roux S, et al. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors. Journal of biomaterials applications. 2013;28(3):385-94. 59. Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2009;6(2):323-36. 60. Vaughan CJ, Delanty N. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke. 1999;30(9):1969-73. 61. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 1998;273(37):24266-71. 62. Endres M, Laufs U. Effects of statins on endothelium and signaling mechanisms. Stroke. 2004;35(11 Suppl 1):2708-11. 63. Bogman K, Peyer AK, Torok M, Kusters E, Drewe J. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol. 2001;132(6):1183-92. 64. Clendening JW, Pandyra A, Li Z, Boutros PC, Martirosyan A, Lehner R, et al. Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma. Blood. 2010;115(23):4787-97. 65. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res. 2005;97(12):1232- 5. 66. Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res. 2005;65(3):999-1006. 67. Fritz G, Kaina B. Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 2006;6(1):1-14. 68. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett. 2004;206(2):193-9. 69. Rossol-Allison J, Stemmle LN, Swenson-Fields KI, Kelly P, Fields PE, McCall SJ, et al. Rho GTPase activity modulates Wnt3a/beta-catenin signaling. Cell Signal. 2009;21(11):1559- 68. 70. Kraynack NC, Corey DA, Elmer HL, Kelley TJ. Mechanisms of NOS2 regulation by Rho GTPase signaling in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;283(3):L604-11. 71. Rattan R, Giri S, Singh AK, Singh I. Rho A negatively regulates cytokine-mediated inducible nitric oxide synthase expression in brain-derived transformed cell lines: negative regulation of IKKalpha. Free Radic Biol Med. 2003;35(9):1037-50. 72. Lin X, Li Q, Wang YJ, Ju YW, Chi ZQ, Wang MW, et al. Morphine inhibits DOXOrubicininduced reactive oxygen species generation and nuclear factor kappaB transcriptional activation in neuroblastoma SH-SY5Y cells. Biochem J. 2007;406(2):215-21.
dc.source73. Riganti C, Doublier S, Costamagna C, Aldieri E, Pescarmona G, Ghigo D, et al. Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases DOXOrubicin cytotoxicity in human colon cancer HT29 cells. Mol Pharmacol. 2008;74(2):476-84. 74. Riganti C, Orecchia S, Pescarmona G, Betta PG, Ghigo D, Bosia A. Statins revert DOXOrubicin resistance via nitric oxide in malignant mesothelioma. Int J Cancer. 2006;119(1):17-27. 75. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781-810. 76. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17(1):45-51. 77. Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, et al. Activation of betacatenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 2008;106(4):1855-65. 78. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483-7. 79. Takahashi-Yanaga F, Sasaguri T. The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci. 2007;104(4):293-302. 80. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA: a cancer journal for clinicians. 2010;60(3):166-93. 81. Nakagawa T, Ido K, Sakuma T, Takeuchi H, Sato K, Kubota T. Prognostic significance of the immunohistochemical expression of O6-methylguanine-DNA methyltransferase, Pglycoprotein, and multidrug resistance protein-1 in glioblastomas. Neuropathology : official journal of the Japanese Society of Neuropathology. 2009;29(4):379-88. 82. Zhang YF, Boado RJ, Pardridge WM. Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm Res. 2003;20(11):1779-85. 83. Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H. Effect of transferrin receptor-targeted liposomal DOXOrubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm. 2007;329(1-2):94-102. 84. Zalipsky S, Saad M, Kiwan R, Ber E, Yu N, Minko T. Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: insights of the mechanism of action. Journal of drug targeting. 2007;15(7-8):518-30. 85. Doi A, Kawabata S, Iida K, Yokoyama K, Kajimoto Y, Kuroiwa T, et al. Tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy. Journal of neuro-oncology. 2008;87(3):287-94. 86. Brahimi-Horn C, Pouyssegur J. When hypoxia signalling meets the ubiquitinproteasomal pathway, new targets for cancer therapy. Critical reviews in oncology/hematology. 2005;53(2):115-23. 87. Brahimi-Horn C, Pouyssegur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bulletin du cancer. 2006;93(8):E73-80. 88. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333-45. 89. Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(22):7092-8. 90. Wick W, Platten M, Weller M. New (alternative) temozolomide regimens for the treatment of glioma. Neuro-oncology. 2009;11(1):69-79.
dc.source91. Riganti C, Salaroglio IC, Caldera V, Campia I, Kopecka J, Mellai M, et al. Temozolomide downregulates P-glycoprotein expression in glioblastoma stem cells by interfering with the Wnt3a/glycogen synthase-3 kinase/beta-catenin pathway. Neuro-oncology. 2013;15(11):1502-17. 92. Mobasher MA, Gonzalez-Rodriguez A, Santamaria B, Ramos S, Martin MA, Goya L, et al. Protein tyrosine phosphatase 1B modulates GSK3beta/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell death & disease. 2013;4:e626. 93. Moeslein FM, Myers MP, Landreth GE. The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B. J Biol Chem. 1999;274(38):26697-704.
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectGlioblastoma
dc.subjecttransportadores ABC
dc.subjectDoxorubicina
dc.subjectTemozolomide
dc.subjectHipoxia
dc.subjectPgp
dc.titleA "Trojan horse" strategy to reverse drug-resistance in brain tumors
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución