dc.contributorSanchez, Adriana
dc.creatorPedraza, Sara Sofía
dc.date.accessioned2019-01-30T21:40:33Z
dc.date.available2019-01-30T21:40:33Z
dc.date.created2019-01-30T21:40:33Z
dc.date.issued2019
dc.identifierhttp://repository.urosario.edu.co/handle/10336/18967
dc.description.abstractMany of the plants that live in paramo have a restricted distribution in the ecosystem. To survive in an ecosystem like this, which has extreme abiotic conditions, plants have specific functional traits. The analysis of functional traits is key because of those traits’ importance to the growth and survival of the organisms. However, there is no large-scale analysis of this kind for páramo. This study therefore examines the relationship between páramo plants’ functional traits and climatic variables, which could allow us to understand the potential effect of climate change on the vegetation. To this end, we performed an extensive literature review and collected information on functional traits. Using this information, we then compared páramo and sub-páramo traits, and subsequently evaluated the correlation between functional traits and climatic variables. We found that there are significant differences between páramo and sub-páramo for all the functional traits except for leaf area (LA). In addition, LDMC, wood density, and maximum height were correlated with some climatic variables.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherPregrado en Biología
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.source1. Afzal A, Duijer A W & Watson J E. 2017. Leaf thickness to predict plant water status. Biosystemsengineering. 156: 148-156.
dc.source2. Almeida J P, Montufar R & Anthelme F. 2012. Patterns and origin of intraspecific functional variability in a tropical alpine species along an altitudinal gradient. Plant Ecology & Diversity. First: 1–11.
dc.source3. Anderson J T & Gezon Z J. 2015. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Global Change Biology. 21: 1689–1703.
dc.source4. Bonan G B. 1993. Importance of Leaf Area Index and Forest Type When Estimating Photosynthesis in Boreal Forests. REMOTE SENS. ENVIRON. 43: 303-314
dc.source5. Cabrera M & Ramírez W. 2014. Restauración ecológica de los páramos de Colombia. Transformación y herramientas para su conservación. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). 296 pp.
dc.source6. Cornelissen J H, Lavorel S, Ganier E, Diaz S, Reich P B, ter Steege H, Mirgan H D, van del Heijden M, Pausas J G & Poorter H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany.51: 335-380.
dc.source7. Díaz M A, Navarrete J D, & Suárez T. 2005. Páramos: Hidrosistemas Sensibles. Revista de Ingeniería. 22: 64-75.
dc.source8. Dierig DA, Adam N R, Mackey B E, Dalquist GH & Coffelt T A. 2005. Temperature and elevation effects on plant growth, development, and seed production of two Lesquerella species. Industrial Crops and Products. 24: 17–25.
dc.source9. Dong Y & Liu Y. 2017. Response of Korean pine's functional traits to geography and climate. PLoS ONE. 12(9).
dc.source10. Ducey M, Woodall C M & Bravo-Oviedo A. 2017. Climate and species functional traits influence máximum live tree stocking in the Lake States, USA. Forest Ecology and Management. Elsevier. 386: 51-61.
dc.source11. Harguindeguy N P, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M, Cornwell W K, Craine J M, Gurvich D E, Urcelay C, Veneklaas E J, ReichI P B, Poorter L, Wright I J, Ray P, Enrico L, Pausas J G, de Vos A C, Buchmann N, Funes G, Quétier F, Hodgson J G, Thompson K, Morgan H D, ter Steege H, van der Heijden M G A, Sack L, Blonder B, Poschlod P, Vaieretti M V, Conti G, Staver A C, Aquino S & Cornelissen J H C. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany: A- BO.
dc.source12. Hietz P, Rosner S, Hietz-Seifert U & Wright J. 2017. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytologist. 213: 170–180.
dc.source13. Hijmans R J, Cameron S E, Parra J L, Jones P G & Jarvis A. 2005.World Clim. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25: 1965-1978.
dc.source14. Hofstede R, Calles J, López V, Polanco R, Torres F, Ulloa J, Vásquez A & Cerra M. 2014. Los Páramos Andinos ¿Qué sabemos? Estado de conocimiento sobre elimpacto del cambio climático en el ecosistema páramo. UICN. Ecuador.
dc.source15. Hooghiemstra H, Wijniga V & Cleef A. 2006. The paleobontanical record of Colombia: Implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden. 93 (2): 297-325.
dc.source16. Kimball S, Funk J L, Spasojevic M J, Suding K N, Parker S & Goulden M L. 2016. Can functional traits predict plant community response to global change?. Ecosphere. 7(12): e01602.
dc.source17. Lavorel S, Diaz S, Cornelissen H C, Garnier E, Harrison S P, McIntyre S, Pausas J, Pérez-Harguindeguy N, Roumet C & Urcelay C. 2007. Plant Functional Types: Are We Getting Any Closer to the Holy Grail?.Terrestrial Ecosystems in a Changing World. The IGBP Series, Springer-Verlag, Berlin Heidelberg. Cap.13: 149-160.
dc.source18. Lavorel S, Gachet S, Sahl A, Colace M, Gaucherand S, Burylo M & Bonet R. 2010. A Plant Functional Traits Database for the Alps-Application to the Understanding of Functional Effects of Changed Grassland Management. A plant functional traits data base for the Alps. Cap. 12.
dc.source19. Lavorel S, Grigulis K, Lamarque P, Colace M, Garden D, Girel J, Pellet G & Douzet R. 2011. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology. 99: 135-147.
dc.source20. Luteyn J L. 1999. Páramo ecosystem. Based on Memoirs of the New York Botanical Garden. 84.
dc.source21. Moles A T, Warton D I, Warman L, Swenson N G, Laffan S W, Zanne A E, Pitman A, Hemmings F A & Leishman M R. 2009. Global patterns in plant height. Journal of Ecology. 97: 923–932.
dc.source22. Monasterio M. 1980. Los Páramos Andinos como región natural. Características biogeográficas generales y afinidad con otras regiones andinas. En: Monasterio, M. (Ed): Estudios Ecológicos en los Páramos Andinos. Editorial de la Universidad de Los Andes: 15-27.
dc.source23. Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A & Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature. 403: 853–858.
dc.source24. Nock C A, Vogt R J & Beisner B E. 2016. Functional Traits. eLS. John Wiley & Sons. Ltd: Chichester.
dc.source25. Pérez L, Rebollo S, Hernández V, García G, Pavón J & Gómez A. 2012. Plant functional trait responses to interanual rainfall variability, summer drought and seasonal grazing in Mediterranean herbaceous communities. Functional Ecology. 26: 740-749.
dc.source26. Peyre G, Balslev H, Martí D & Font X. 2015. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia. 45.
dc.source27. Pregitzer K S & King J S. 2005. Effects of Soil Temperature on Nutrient Uptake. Ecological Studies. Volumen 181. H. BassiriRad (Ed.) Nutrient Acquisition by Plants An Ecological Perspective
dc.source28. Raven P, Evert R & Eichhorn S. 1992. Biología de las plantas. Editorial Reverte. Vol 2.
dc.source29. Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Special feature – forum the tree of life in ecosystems. Journal of Ecology. 102: 275–301.
dc.source30. Ribas M & González M A. 2000. Fisiología de la respiración de las plantas. Fundamentos de Fisiología Vegetal. Capítulo 14. Editorial Mc Graw-Hill Interamericana, 217-234.
dc.source31. Ruger N, Wirth C, Wright S J & Condit R. 2012. Functional traits explain light and size response of growth rates in tropical tree species. Ecological Society of America. Ecology. 93: 2626–2636.
dc.source32. Sanchez A, Posada J M & Smith W K. 2014. Dynamic cloud regimes, incident sunlight, and leaf temperatures in the endemic Espeletia grandiflora and the indigenous Chusquea tessellata, northern Andean páramo, Colombia. Arctic, Antarctic, and Alpine Research. 46(2): 371-378.
dc.source33. Santiago L S & Wright S J. 2007. Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology. 21: 19-27.
dc.source34. Soudzilovkaia N A, Elumeeva T G, Onipchenko V G, Shidakov I, Salpagarova F S, Khubiev A B, Tekeev D K & Cornelissen J H C. 2013. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. PNAS. 110 (45): 18180-18184.
dc.source35. Suding K N & Goldstein L J. 2008. Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytologist. 180: 559-562.
dc.source36. Taiz L, Zeiger E, Møller IM. & Murphy A. 2015. Plant Physiology and Development. Ed 6. Sinauer Associates, Inc.
dc.source37. Vargas-Cardenas O L. 2016. Distribución altitudinal, papel en los ecosistemas y amenazas de las poblaciones del género Espeletia (Asteráceae) en Colombia. Universidad Distrital Francisco José de Caldas. Facultad de Ciencias y Educación. 62 pp.
dc.source38. Vile D, Garnier E, Shipley B, Laurent G, Navas M L, Roumet C, Lavorel S, Díaz S, Hodgson J G, Lloret, F, Midgley G F, Poorter H, Rutherford M C, Wilson P J & Wright I J. 2005. Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Annals of Botany. 96(6): 1129–1136.
dc.source39. Windauer L B, Slafer G A & Ravetta D A. 2004. Phenological responses to temperature of an annual and a perennial Lesquerella species. Annals of botany. 94(1): 139-44.
dc.source40. Wright I J, Reich P B, Westoby M, Ackerly D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J, Diemer M, Flexas J, Ganier E, Groom P K, Gulias J, Hikosaka K, Lamont B, Lee T, Lee W, Lusk C, Midgley J, Navas M, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V, Roumet C, Thomas S, Tjoelker M G, Veneklaas E J & Villar R. 2004. The worldwide leaf economics spectrum. Nature. 428: 821-827.
dc.source41. Yan Q, Duan Z, Mao J, Li X & Dong F. 2012. Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumissativus L.) seedlings in hydroponics, Soil Science and Plant Nutrition. 58(6): 707-717.
dc.subjectCambio climático
dc.subjectcaracteres funcionales
dc.subjectespecies vegetales
dc.subjectimpacto
dc.subjectpáramo
dc.titleEvaluando caracteres funcionales de plantas en páramo y su relación con factores climáticos
dc.typebachelorThesis


Este ítem pertenece a la siguiente institución