dc.contributorVan Dijck, Patrick
dc.contributorPatarroyo, Manuel A.
dc.contributorGómez López, Arley
dc.creatorRodriguez-Leguizamon, Giovanni
dc.date.accessioned2017-09-27T20:07:34Z
dc.date.available2017-09-27T20:07:34Z
dc.date.created2017-09-27T20:07:34Z
dc.date.issued2016
dc.identifierhttp://repository.urosario.edu.co/handle/10336/13785
dc.identifierhttps://doi.org/10.48713/10336_13785
dc.description.abstractCandida albicans is the pathogenic fungus most frequently compromising patients in a hospital setting; its versatility in adapting to a host has enabled it to colonise their digestive tracts, genitourinary tracts and skin. Infection caused by this fungus represents a diagnostic challenge for doctors regarding their patients and represents high costs for health systems. C. albicans represents a diagnostic challenge in clinical practice since it is a commensal microorganism whose transformation into a pathogen remains partly unknown; moreover, its adaptation to a hospital environment poses an additional problem. However, advances in mycological techniques, proteomics for diagnosis and molecular biology can provide diagnostic criteria for a better understanding of this dangerous pathogen threatening the critically ill patients’ lives in hospitals worldwide. This thesis thus describes the atypical pattern of a group of C. albicans nosocomial isolates leading to an association between phenotypical traits concerned with echinocandin tolerance and changes in these microorganisms’ morphology and physiology regarding selective pressure factors in an antifungal-mediated hospital setting. Evaluation by molecular biology, conventional mycology and proteomics’ tools should contribute towards constructing more accurate local epidemiology for decision-making regarding the management and control of hospital infection by this fungus.
dc.languagespa
dc.publisherUniversidad del Rosario
dc.publisherDoctorado en Ciencias Biomédicas
dc.publisherFacultad de Ciencias Naturales y Matemáticas
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAbierto (Texto Completo)
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rightsEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.sourceWhittington A: From commensal to pathogen: Candida albicans. In: Human Fungal Pathogens. Edited by Kurzai O. Berlin Heidelberg: Springer-Verlag; 2014: 3-18.
dc.sourcePfaller MA, Diekema DJ: Epidemiology of invasive mycoses in North America. Critical reviews in microbiology 2010 36(1):1-53
dc.sourcePfaller MA: Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 1996, 22 Suppl 2:S89-94
dc.sourceWisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 2004, 39(3):309-317
dc.sourceGudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D: Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 2003, 37(9):1172-1177
dc.sourcePfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clinical microbiology reviews 2007, 20(1):133-163
dc.sourceDiazGranados CA, Martinez A, Deaza C, Valderrama S: An outbreak of Candida spp. bloodstream infection in a tertiary care center in Bogota, Colombia. Braz J Infect Dis 2008, 12(5):390-394
dc.sourceSullivan DJ, Moran GP, Pinjon E, Al-Mosaid A, Stokes C, Vaughan C, Coleman DC: Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS yeast research 2004, 4(4-5):369-376
dc.sourcePfaller MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, Veselov AV, Tiraboschi N, Nagy E, Gibbs DL: Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. Journal of clinical microbiology 2005, 43(12):5848-5859
dc.sourcePfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ: In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. Journal of clinical microbiology 2008, 46(1):150-156
dc.sourceWalker LA, Gow NA, Munro CA: Fungal echinocandin resistance. Fungal Genet Biol 2010, 47(2):117-126
dc.sourceDannaoui E, Desnos-Ollivier M, Garcia-Hermoso D, Grenouillet F, Cassaing S, Baixench MT, Bretagne S, Dromer F, Lortholary O, French Mycoses Study G: Candida spp. with acquired echinocandin resistance, France, 2004-2010. Emerging infectious diseases 2012, 18(1):86-90
dc.sourcePappas PG, Kauffman CA, Andes D, Benjamin DK, Jr., Calandra TF, Edwards JE, Jr., Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L et al: Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009, 48(5):503-535
dc.sourceShapiro RS, Robbins N, Cowen LE: Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011, 75(2):213-267
dc.sourcePark S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, Li W, Vyas V, Fan H, Abruzzo G et al: Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrobial agents and chemotherapy 2005, 49(8):3264-3273
dc.sourceSorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, de Koning LJ, Klis FM: Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryotic cell 2011, 10(8):1071-1081
dc.sourceBrandt ME: Recent taxonomic developments with Candida and other opportunistic yeasts. Curr Fungal Infect Rep 2012, 6(3):170-177
dc.sourceHedges SB: The origin and evolution of model organisms. Nature reviews Genetics 2002, 3(11):838-849
dc.sourceCriseo G, Scordino F, Romeo O: Current methods for identifying clinically important cryptic Candida species. Journal of microbiological methods 2015, 111C:50-56
dc.sourceNgouana TK, Krasteva D, Drakulovski P, Toghueo RK, Kouanfack C, Ambe A, Reynes J, Delaporte E, Boyom FF, Mallie M et al: Investigation of minor species Candida africana, Candida stellatoidea and Candida dubliniensis in the Candida albicans complex among Yaounde (Cameroon) HIV-infected patients. Mycoses 2015, 58(1):33-39
dc.sourceTietz HJ, Hopp M, Schmalreck A, Sterry W, Czaika V: Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses 2001, 44(11-12):437-445.
dc.sourceBerman J, Sudbery PE: Candida Albicans: a molecular revolution built on lessons from budding yeast. Nature reviews Genetics 2002, 3(12):918-930
dc.sourceSudbery PE: Growth of Candida albicans hyphae. Nature reviews 2011, 9(10):737-748
dc.sourceWahab AA, Taj-Aldeen SJ, Kolecka A, ElGindi M, Finkel JS, Boekhout T: High prevalence of Candida dubliniensis in lower respiratory tract secretions from cystic fibrosis patients may be related to increased adherence properties. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 2014, 24:14-19
dc.sourceSullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC: Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 1995, 141 ( Pt 7):1507-1521
dc.sourceJones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT et al: The diploid genome sequence of Candida albicans. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(19):7329-7334
dc.sourceButler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL et al: Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459(7247):657-662
dc.sourceDe Backer MD, Magee PT, Pla J: Recent developments in molecular genetics of Candida albicans. Annual review of microbiology 2000, 54:463-498
dc.sourceSantos MA, Tuite MF: The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic acids research 1995, 23(9):1481-1486
dc.sourceArnaud MB, Inglis DO, Skrzypek MS, Binkley J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G: Candida Genome Database. http://www.candidagenome.org/ (Last accessed may 19th 2015)
dc.sourceForche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ: The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS biology 2008, 6(5):e110
dc.sourceRuiz-Herrera J, Elorza MV, Valentin E, Sentandreu R: Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS yeast research 2006, 6(1):14-29
dc.sourceBrown JA, Catley BJ: Monitoring polysaccharide synthesis in Candida albicans. Carbohydrate Research 1992, 227:195-202
dc.sourceGow NA, van de Veerdonk FL, Brown AJ, Netea MG: Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nature reviews 2012, 10(2):112-122
dc.sourceChaffin WL: Candida albicans cell wall proteins. Microbiol Mol Biol Rev 2008, 72(3):495-544
dc.sourcePlaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML: Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol 2008, 45(10):1404-1414
dc.sourceBruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP: Control of the C. albicans cell wall damage response by transcriptional regulator Cas5. PLoS pathogens 2006, 2(3):e21
dc.sourceLiu TT, Lee RE, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD: Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrobial agents and chemotherapy 2005, 49(6):2226-2236
dc.sourceBarchiesi F, Orsetti E, Gesuita R, Skrami E, Manso E, Candidemia Study G: Epidemiology, clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy from 2010 to 2014. Infection 2015
dc.sourceDiekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M: The changing epidemiology of healthcare-associated candidemia over three decades. Diagnostic microbiology and infectious disease 2012, 73(1):45-48
dc.sourceNucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL: Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis 2010, 51(5):561-570
dc.sourceChen PY, Chuang YC, Wang JT, Sheng WH, Yu CJ, Chu CC, Hsueh PR, Chang SC, Chen YC: Comparison of epidemiology and treatment outcome of patients with candidemia at a teaching hospital in Northern Taiwan, in 2002 and 2010. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi 2014, 47(2):95-103
dc.sourceWilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J: The direct cost and incidence of systemic fungal infections. Value Health 2002, 5(1):26-34
dc.sourceBlot SI, Depuydt P, Annemans L, Benoit D, Hoste E, De Waele JJ, Decruyenaere J, Vogelaers D, Colardyn F, Vandewoude KH: Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 2005, 41(11):1591-1598
dc.sourceMoran C, Grussemeyer CA, Spalding JR, Benjamin DK, Jr., Reed SD: Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. American journal of infection control 2010, 38(1):78-80
dc.sourceCalderone RA: Candida and candidiasis, 2nd edn. Washington D.C., U.S.A.; 2012
dc.sourceKadosh D, Johnson AD: Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Molecular biology of the cell 2005, 16(6):2903-2912
dc.sourceLongo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's principles of internal medicine, 18th edn: McGraw-Hill; 2012
dc.sourceHermsen ED, Zapapas MK, Maiefski M, Rupp ME, Freifeld AG, Kalil AC: Validation and comparison of clinical prediction rules for invasive candidiasis in intensive care unit patients: a matched case-control study. Critical care (London, England) 2011, 15(4):R198
dc.sourceGarner JS: Infection control and applied epidemiology. St. Louis, MI, U.S.A.: Mosby; 1996
dc.sourceHoran TC, Andrus M, Dudeck MA: CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. American journal of infection control 2008, 36(5):309-332
dc.sourcePerlroth J, Choi B, Spellberg B: Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 2007, 45(4):321-346
dc.sourceSydnor ER, Perl TM: Hospital epidemiology and infection control in acute-care settings. Clinical microbiology reviews 2011, 24(1):141-173
dc.sourceOstrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH: An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010, 9(9):719-727
dc.sourceMaubon D, Garnaud C, Calandra T, Sanglard D, Cornet M: Resistance of Candida spp. to antifungal drugs in the ICU: where are we now? Intensive care medicine 2014, 40(9):1241-1255
dc.sourceAnderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S et al: Amphotericin forms an extramembranous and fungicidal sterol sponge. Nature chemical biology 2014, 10(5):400-406
dc.sourceHope WW, Tabernero L, Denning DW, Anderson MJ: Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrobial agents and chemotherapy 2004, 48(11):4377-4386
dc.sourceEschenauer G, Depestel DD, Carver PL: Comparison of echinocandin antifungals. Therapeutics and clinical risk management 2007, 3(1):71-97
dc.sourcePerlin DS: Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 2007, 10(3):121-130
dc.sourceDenning DW: Echinocandin antifungal drugs. Lancet 2003, 362(9390):1142-1151
dc.sourceDeresinski SC, Stevens DA: Caspofungin. Clin Infect Dis 2003, 36(11):1445-1457
dc.sourceCornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S et al: ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 2012, 18 Suppl 7:19-37
dc.sourceUllmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E et al: ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 2012, 18 Suppl 7:53-67
dc.sourceCowen LE: The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nature reviews 2008, 6(3):187-198
dc.sourceRogers TR: Antifungal drug resistance: limited data, dramatic impact? International journal of antimicrobial agents 2006, 27 Suppl 1:7-11
dc.sourceSanglard D, Coste A, Ferrari S: Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS yeast research 2009, 9(7):1029-1050
dc.sourceSchuetzer-Muehlbauer M, Willinger B, Krapf G, Enzinger S, Presterl E, Kuchler K: The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Molecular microbiology 2003, 48(1):225-235
dc.sourceWatamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ: Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. Journal of medical microbiology 2011, 60(Pt 9):1241-1247
dc.sourcePerlin DS: Current perspectives on echinocandin class drugs. Future microbiology 2011, 6(4):441-457
dc.sourceRamage G, Saville SP, Thomas DP, Lopez-Ribot JL: Candida biofilms: an update. Eukaryotic cell 2005, 4(4):633-638
dc.sourceRamage G, Martinez JP, Lopez-Ribot JL: Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS yeast research 2006, 6(7):979-986
dc.sourceSingh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE: Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS pathogens 2009, 5(7):e1000532
dc.sourceRamage G, Rajendran R, Sherry L, Williams C: Fungal biofilm resistance. International journal of microbiology 2012, 2012:528521
dc.sourceLaverdiere M, Lalonde RG, Baril JG, Sheppard DC, Park S, Perlin DS: Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. The Journal of antimicrobial chemotherapy 2006, 57(4):705-708
dc.sourceGarcia-Effron G, Park S, Perlin DS: Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrobial agents and chemotherapy 2009, 53(1):112-122
dc.sourceBalashov SV, Park S, Perlin DS: Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrobial agents and chemotherapy 2006, 50(6):2058-2063
dc.sourceMiller CD, Lomaestro BW, Park S, Perlin DS: Progressive esophagitis caused by Candida albicans with reduced susceptibility to caspofungin. Pharmacotherapy 2006, 26(6):877-880
dc.sourceKatiyar S, Pfaller M, Edlind T: Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrobial agents and chemotherapy 2006, 50(8):2892-2894
dc.sourceBaixench MT, Aoun N, Desnos-Ollivier M, Garcia-Hermoso D, Bretagne S, Ramires S, Piketty C, Dannaoui E: Acquired resistance to echinocandins in Candida albicans: case report and review. The Journal of antimicrobial chemotherapy 2007, 59(6):1076-1083
dc.sourcePfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, Motyl M, Perlin DS: Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 2011, 14(3):164-176
dc.sourceWiederhold NP, Grabinski JL, Garcia-Effron G, Perlin DS, Lee SA: Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrobial agents and chemotherapy 2008, 52(11):4145-4148
dc.sourcePoulain D, Jouault T: Candida albicans cell wall glycans, host receptors and responses: elements for a decisive crosstalk. Current opinion in microbiology 2004, 7(4):342-349
dc.sourceNather K, Munro CA: Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS microbiology letters 2008, 285(2):137-145
dc.sourceCowen LE, Steinbach WJ: Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryotic cell 2008, 7(5):747-764
dc.sourceAngiolella L, Stringaro AR, De Bernardis F, Posteraro B, Bonito M, Toccacieli L, Torosantucci A, Colone M, Sanguinetti M, Cassone A et al: Increase of virulence and its phenotypic traits in drug-resistant strains of Candida albicans. Antimicrobial agents and chemotherapy 2008, 52(3):927-936
dc.sourceWiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE: Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrobial agents and chemotherapy 2005, 49(12):5146-5148
dc.sourceRauceo JM, Blankenship JR, Fanning S, Hamaker JJ, Deneault JS, Smith FJ, Nantel A, Mitchell AP: Regulation of the Candida albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1. Molecular biology of the cell 2008, 19(7):2741-2751
dc.sourceOnyewu C, Wormley FL, Jr., Perfect JR, Heitman J: The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infection and immunity 2004, 72(12):7330-7333
dc.sourcePerlin DS: Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs 2014, 74(14):1573-1585
dc.sourceShields RK, Nguyen MH, Du C, Press E, Cheng S, Clancy CJ: Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrobial agents and chemotherapy 2011, 55(6):2641-2647
dc.sourceStevens DA, Ichinomiya M, Koshi Y, Horiuchi H: Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrobial agents and chemotherapy 2006, 50(9):3160-3161
dc.sourceGauwerky K, Borelli C, Korting HC: Targeting virulence: a new paradigm for antifungals. Drug discovery today 2009, 14(3-4):214-222
dc.sourceWilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F et al: Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS yeast research 2009, 9(5):688-700
dc.sourceNailis H, Kucharikova S, Ricicova M, Van Dijck P, Deforce D, Nelis H, Coenye T: Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC microbiology 2010, 10:114
dc.sourceFelk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schafer W, Hube B: Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infection and immunity 2002, 70(7):3689-3700
dc.sourceWayne PA: CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; CLSI document M27-A3; 2008
dc.sourceRodriguez-Tudela JL: EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 2008, 14(4):398-405
dc.sourceEspinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, Chryssanthou E, Cuenca-Estrella M, Dannaoui E, Fothergill A et al: Interlaboratory variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrobial agents and chemotherapy 2013, 57(12):5836-5842
dc.sourceWayne PA: CLSI. Reference Method for Broth Dilution Antifungal Suscetibility Testing of Yeasts; Fourth Informational Supplement. CLSI Document M27-S4; 2012
dc.sourcePfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD, Andes D, Brown SD, Chaturvedi V, Ghannoum MA, Knapp CC et al: Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. Journal of clinical microbiology 2008, 46(8):2620-2629
dc.sourceEspinel-Ingroff A: In vitro antifungal activities of anidulafungin and micafungin, licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal isolates: review of the literature. Rev Iberoam Micol 2003, 20(4):121-136
dc.sourceOstrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J et al: Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrobial agents and chemotherapy 2003, 47(10):3149-3154
dc.sourceEspinel-Ingroff A, Canton E, Peman J, Martin-Mazuelo E: Comparison of anidulafungin MICs determined by the clinical and laboratory standards institute broth microdilution method (M27-A3 document) and Etest for Candida species isolates. Antimicrobial agents and chemotherapy 2010, 54(3):1347-1350
dc.sourcePfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, Jones RN: Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. Journal of clinical microbiology 2010, 48(5):1592-1599
dc.sourcePfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Jones RN, Turnidge J, Diekema DJ: Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. Journal of clinical microbiology 2010, 48(1):52-56
dc.sourceArendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW: Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat 2013, 16(6):81-95
dc.sourcePfaller MA, Boyken L, Hollis RJ, Messer SA, Tendolkar S, Diekema DJ: Global surveillance of in vitro activity of micafungin against Candida: a comparison with caspofungin by CLSI-recommended methods. Journal of clinical microbiology 2006, 44(10):3533-3538
dc.sourceArendrup MC, Garcia-Effron G, Lass-Florl C, Lopez AG, Rodriguez-Tudela JL, Cuenca-Estrella M, Perlin DS: Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrobial agents and chemotherapy 2010, 54(1):426-439
dc.sourceMinisterio de Protección Social: Resolución 8430. In. Bogotá, Colombia; 1993
dc.sourceWMA Declaration of Helsinki: Ethical Principles for Human Research Involving Human Subjects. In. Seoul, Korea; 2008
dc.sourceGarner J.S: Infection Control and Applied Epidemiology. St. Louis: Mosby; 1996.
dc.sourcePfaller MA, Bale M, Buschelman B, Lancaster M, Espinel-Ingroff A, Rex JH, Rinaldi MG: Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards proposed standard methods. Journal of clinical microbiology 1994, 32(7):1650-1653
dc.sourceKoszul R, Malpertuy A, Frangeul L, Bouchier C, Wincker P, Thierry A, Duthoy S, Ferris S, Hennequin C, Dujon B: The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS letters 2003, 534(1-3):39-48
dc.sourceRamage G, Vandewalle K, Wickes BL, Lopez-Ribot JL: Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 2001, 18(4):163-170
dc.sourceMaidan MM, De Rop L, Relloso M, Diez-Orejas R, Thevelein JM, Van Dijck P: Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infection and immunity 2008, 76(4):1686-1694
dc.sourceWilson D, Fiori A, Brucker KD, Dijck PV, Stateva L: Candida albicans Pde1p and Gpa2p comprise a regulatory module mediating agonist-induced cAMP signalling and environmental adaptation. Fungal Genet Biol 2010, 47(9):742-752
dc.sourceCuetara MS, Alhambra A, Del Palacio A: [Traditional microbiological diagnosis for invasive candidiasis in critical non-neutropenic patients]. Rev Iberoam Micol 2006, 23(1):4-7
dc.sourceLivak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408
dc.sourceWalker LA, Gow NA, Munro CA: Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrobial agents and chemotherapy 2013, 57(1):146-154
dc.sourceCendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gomez-Lopez A, Boekhout T: Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. Journal of clinical microbiology 2012, 50(11):3641-3651
dc.sourceQian J, Cutler JE, Cole RB, Cai Y: MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Analytical and bioanalytical chemistry 2008, 392(3):439-449
dc.sourceSuzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22(12):1540-1542
dc.sourceAlberti-Segui C, Morales AJ, Xing H, Kessler MM, Willins DA, Weinstock KG, Cottarel G, Fechtel K, Rogers B: Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast (Chichester, England) 2004, 21(4):285-302
dc.sourceWhite TJ BT, Lee S, Taylor J.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide Methods and Applications. Edited by Innis A GD, Snisky JJ, White TJ. San Diego, CA: Academic Press; 1990: 315-322
dc.sourceRomeo O, Criseo G: First molecular method for discriminating between Candida africana, Candida albicans, and Candida dubliniensis by using hwp1 gene. Diagnostic microbiology and infectious disease 2008, 62(2):230-233
dc.sourceEdwards JE, Jr., Bodey GP, Bowden RA, Buchner T, de Pauw BE, Filler SG, Ghannoum MA, Glauser M, Herbrecht R, Kauffman CA et al: International Conference for the Development of a Consensus on the Management and Prevention of Severe Candidal Infections. Clin Infect Dis 1997, 25(1):43-59
dc.sourceEggimann P, Ostrosky-Zeichner L: Early antifungal intervention strategies in ICU patients. Current opinion in critical care 2010, 16(5):465-469
dc.sourceAsmundsdottir LR, Erlendsdottir H, Haraldsson G, Guo H, Xu J, Gottfredsson M: Molecular epidemiology of candidemia: evidence of clusters of smoldering nosocomial infections. Clin Infect Dis 2008, 47(2):e17-24
dc.sourceDrakulovski P, Dunyach C, Bertout S, Reynes J, Mallie M: A Candida albicans strain with high MIC for caspofungin and no FKS1 mutations exhibits a high chitin content and mutations in two chitinase genes. Med Mycol 2011, 49(5):467-474
dc.sourceGomez J, Garcia-Vazquez E, Hernandez A, Espinosa C, Ruiz J: [Nosocomial candidemia: new challenges of an emergent problem]. Rev Esp Quimioter 2010, 23(4):158-168
dc.sourceMorrell M, Fraser VJ, Kollef MH: Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrobial agents and chemotherapy 2005, 49(9):3640-3645
dc.sourceBaillie GS, Douglas LJ: Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrobial agents and chemotherapy 1998, 42(8):1900-1905
dc.sourceErnst JF, Pla J: Signaling the glycoshield: maintenance of the Candida albicans cell wall. International journal of medical microbiology : IJMM 2011, 301(5):378-383
dc.sourceBrauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D: Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Molecular biology of the cell 2008, 19(1):352-367
dc.sourceKucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H: Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Journal of medical microbiology 2011, 60(Pt 9):1261-1269
dc.sourceStaab JF, Bradway SD, Fidel PL, Sundstrom P: Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 1999, 283(5407):1535-1538
dc.sourceCowen LE, Anderson JB, Kohn LM: Evolution of drug resistance in Candida albicans. Annual review of microbiology 2002, 56:139-165
dc.sourceMaidan MM, Thevelein JM, Van Dijck P: Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochemical Society transactions 2005, 33(Pt 1):291-293
dc.sourceHomann OR, Dea J, Noble SM, Johnson AD: A phenotypic profile of the Candida albicans regulatory network. PLoS genetics 2009, 5(12):e1000783
dc.sourceHan TL, Cannon RD, Villas-Boas SG: The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011, 48(8):747-763
dc.sourceLiu H, Kohler J, Fink GR: Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994, 266(5191):1723-1726
dc.sourceToenjes KA, Munsee SM, Ibrahim AS, Jeffrey R, Edwards JE, Jr., Johnson DI: Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrobial agents and chemotherapy 2005, 49(3):963-972
dc.sourcePeeters T, Versele M, Thevelein JM: Directly from Galpha to protein kinase A: the kelch repeat protein bypass of adenylate cyclase. Trends in biochemical sciences 2007, 32(12):547-554
dc.sourceKadosh D, Lopez-Ribot JL: Candida albicans: adapting to succeed. Cell host & microbe 2013, 14(5):483-485
dc.sourceBraun BR, Kadosh D, Johnson AD: NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. The EMBO journal 2001, 20(17):4753-4761
dc.sourceNobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD: A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012, 148(1-2):126-138
dc.sourceMartel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, Kelly DE, Kelly SL: A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrobial agents and chemotherapy 2010, 54(9):3578-3583
dc.sourceMarkovich S, Yekutiel A, Shalit I, Shadkchan Y, Osherov N: Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrobial agents and chemotherapy 2004, 48(10):3871-3876
dc.sourceBarker KS, Crisp S, Wiederhold N, Lewis RE, Bareither B, Eckstein J, Barbuch R, Bard M, Rogers PD: Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. The Journal of antimicrobial chemotherapy 2004, 54(2):376-385
dc.sourceZhang N, Cannon RD, Holland BR, Patchett ML, Schmid J: Impact of genetic background on allele selection in a highly mutable Candida albicans gene, PNG2. PloS one 2010, 5(3):e9614
dc.sourceMunro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NA: The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Molecular microbiology 2007, 63(5):1399-1413
dc.sourceWalker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA: Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS pathogens 2008, 4(4):e1000040
dc.sourceNishiyama Y, Uchida K, Yamaguchi H: Morphological changes of Candida albicans induced by micafungin (FK463), a water-soluble echinocandin-like lipopeptide. Journal of electron microscopy 2002, 51(4):247-255
dc.sourceBader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M: Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 2011, 17(9):1359-1365
dc.sourceVlek A, Kolecka A, Khayhan K, Theelen B, Groenewald M, Boel E, Boekhout T: Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. Journal of clinical microbiology 2014, 52(8):3023-3029
dc.sourceTan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC: Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. Journal of clinical microbiology 2012, 50(10):3301-3308
dc.sourceAlonso-Vargas R, Elorduy L, Eraso E, Cano FJ, Guarro J, Ponton J, Quindos G: Isolation of Candida africana, probable atypical strains of Candida albicans, from a patient with vaginitis. Med Mycol 2008, 46(2):167-170
dc.sourceDieng Y, Sow D, Ndiaye M, Guichet E, Faye B, Tine R, Lo A, Sylla K, Ndiaye M, Abiola A et al: [Identification of three Candida africana strains in Senegal]. Journal de mycologie medicale 2012, 22(4):335-340
dc.sourceNnadi NE, Ayanbimpe GM, Scordino F, Okolo MO, Enweani IB, Criseo G, Romeo O: Isolation and molecular characterization of Candida africana from Jos, Nigeria. Med Mycol 2012, 50(7):765-767
dc.sourceRomeo O, Criseo G: Morphological, biochemical and molecular characterisation of the first Italian Candida africana isolate. Mycoses 2009, 52(5):454-457
dc.sourceOdds FC, Bougnoux ME, Shaw DJ, Bain JM, Davidson AD, Diogo D, Jacobsen MD, Lecomte M, Li SY, Tavanti A et al: Molecular phylogenetics of Candida albicans. Eukaryotic cell 2007, 6(6):1041-1052
dc.sourceRomeo O TH, Criseo G.: Candida africana: It is a fungal pathogen? Curr Fungal Infect Rep 2013, 7:192-197
dc.sourcePulcrano G, Iula DV, Vollaro A, Tucci A, Cerullo M, Esposito M, Rossano F, Catania MR: Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections. Journal of microbiological methods 2013, 94(3):262-266
dc.sourceDe Carolis E, Vella A, Vaccaro L, Torelli R, Posteraro P, Ricciardi W, Sanguinetti M, Posteraro B: Development and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based yeast identification using a fast protein extraction procedure. Journal of clinical microbiology 2014, 52(5):1453-1458
dc.sourcePedreno Y, Maicas S, Arguelles JC, Sentandreu R, Valentin E: The ATC1 gene encodes a cell wall-linked acid trehalase required for growth on trehalose in Candida albicans. The Journal of biological chemistry 2004, 279(39):40852-40860
dc.sourceRam SP, Romana LK, Shepherd MG, Sullivan PA: Exo-(1----3)-beta-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans. Journal of general microbiology 1984, 130(5):1227-1236
dc.sourcePeterson SW, Kurtzman CP: Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 1991, 14:124-129
dc.sourceBorman AM, Szekely A, Linton CJ, Palmer MD, Brown P, Johnson EM: Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana isolates from the United Kingdom. Journal of clinical microbiology 2013, 51(3):967-972
dc.sourceShan Y, Fan S, Liu X, Li J: Prevalence of Candida albicans-closely related yeasts, Candida africana and Candida dubliniensis, in vulvovaginal candidiasis. Med Mycol 2014, 52(6):636-640
dc.sourcePukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E: Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryotic cell 2009, 8(11):1750-1758
dc.sourceBeck-Sague C, Jarvis WR: Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System. The Journal of infectious diseases 1993, 167(5):1247-1251
dc.sourceGibbons JD: Nonparametric statistical inference. New York: McGraw Hill; 1971
dc.sourceCastellan NJ, Siegel S: Nonparametric statistics for the behavioral science, 2nd edn: McGraw - Hill Publishing Co; 1988
dc.sourceYang SP, Chen YY, Hsu HS, Wang FD, Chen LY, Fung CP: A risk factor analysis of healthcare-associated fungal infections in an intensive care unit: a retrospective cohort study. BMC infectious diseases 2013, 13:10
dc.sourceChandra RK: Impact of nutritional status and nutrient supplements on immune responses and incidence of infection in older individuals. Ageing research reviews 2004, 3(1):91-104
dc.sourceOstrosky-Zeichner L, Pappas PG, Shoham S, Reboli A, Barron MA, Sims C, Wood C, Sobel JD: Improvement of a clinical prediction rule for clinical trials on prophylaxis for invasive candidiasis in the intensive care unit. Mycoses 2009, 54(1):46-51
dc.sourceBastert J, Schaller M, Korting HC, Evans EG: Current and future approaches to antimycotic treatment in the era of resistant fungi and immunocompromised hosts. International journal of antimicrobial agents 2001, 17(2):81-91
dc.sourceDiekema DJ, Pfaller MA: Nosocomial candidemia: an ounce of prevention is better than a pound of cure. Infect Control Hosp Epidemiol 2004, 25(8):624-626
dc.sourceSobel JD, Rex JH: Invasive candidiasis: turning risk into a practical prevention policy? Clin Infect Dis 2001, 33(2):187-190
dc.sourceRodriguez-Leguizamon G, Fiori A, Lagrou K, Gaona MA, Ibanez M, Patarroyo MA, Van Dijck P, Gomez-Lopez A: New echinocandin susceptibility patterns for nosocomial Candida albicans in Bogota, Colombia, in ten tertiary care centres: an observational study. BMC infectious diseases 2015, 15:108
dc.sourceBen-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP: Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. The Journal of infectious diseases 2011, 204(4):626-635
dc.sourceSlater JL, Howard SJ, Sharp A, Goodwin J, Gregson LM, Alastruey-Izquierdo A, Arendrup MC, Warn PA, Perlin DS, Hope WW: Disseminated Candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at position Ser645 cannot be successfully treated with micafungin. Antimicrobial agents and chemotherapy 2011, 55(7):3075-3083
dc.sourceRomeo O, Criseo G: Candida africana and its closest relatives. Mycoses 2011, 54(6):475-486
dc.sourceGil-Alonso S, Jauregizar N, Canton E, Eraso E, Quindos G: Comparison of the in vitro activity of echinocandins against Candida albicans, Candida dubliniensis, and Candida africana by time-kill curves. Diagnostic microbiology and infectious disease 2015, 82(1):57-61
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectCandida albicans
dc.subjectCandida africana
dc.subjectCandida albicans atipica
dc.subjectInfecciones adquiridas en el hospital
dc.subjectMALDI - TOF MS
dc.subjectEquinocandinas
dc.subjectCaspofungina
dc.titleThe role of the FKS1 gene in nosocomial Candida albicans isolates’ virulence and antifungal resistance
dc.typedoctoralThesis


Este ítem pertenece a la siguiente institución