masterThesis
Modelos de previsão de carga elétrica em curto prazo desenvolvidos com redes neurais artificiais e lógica Fuzzy considerando a variável temperatura
Registro en:
Maria Andrade da Silveira, Tatiana; Ribeiro Barbosa de Aquino, Ronaldo. Modelos de previsão de carga elétrica em curto prazo desenvolvidos com redes neurais artificiais e lógica Fuzzy considerando a variável temperatura. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Pernambuco, Recife, 2010.
Autor
Maria Andrade da Silveira, Tatiana
Institución
Resumen
O conhecimento prévio do comportamento do consumo de energia é de grande
importância para uma distribuidora de energia. Com base nesta informação, é possível
definir estratégias para operação e planejamento de seu sistema elétrico, além de
possibilitar o acompanhamento da relação entre contratos e consumo de energia, evitando
com isso a ocorrência de penalidades. O consumo de energia é influenciado por diversas
variáveis. Notadamente, em horizontes de curto prazo o consumo de energia é influenciado
por variáveis climáticas, como temperatura e precipitação. Este trabalho apresenta modelos
que utilizam a temperatura como variável de entrada para solucionar o problema de
previsão de carga diária no horizonte de curto prazo, realizada em 7 e 14 dias para um
conjunto de barramentos do sistema de distribuição da CELPE Companhia Energética de
Pernambuco. As técnicas aplicadas no desenvolvimento dos modelos de previsão foram:
Redes Neurais Artificiais com topologia de MLP (Multi Layer Perceptrons) totalmente
conectadas e treinadas com algoritmo Levenberg-Marquardt; e ANFIS (Adaptive Networkbased
Fuzzy Inference System) com o método subctrative clustering . Os métodos Média
Simples e Ensemble foram aplicados para combinação dos resultados dos modelos
propostos. Os modelos criados foram avaliados para previsão de carga do ano de 2009 e
comparados entre si. Os resultados encontrados demonstram que os modelos apresentaram
performances satisfatórias Conselho Nacional de Desenvolvimento Científico e Tecnológico