dc.creatorKowaltowski A.J.
dc.creatorde Souza-Pinto N.C.
dc.creatorCastilho R.F.
dc.creatorVercesi A.E.
dc.date2009
dc.date2015-06-26T13:34:34Z
dc.date2015-11-26T15:33:24Z
dc.date2015-06-26T13:34:34Z
dc.date2015-11-26T15:33:24Z
dc.date.accessioned2018-03-28T22:41:58Z
dc.date.available2018-03-28T22:41:58Z
dc.identifierFree Radical Biology And Medicine. , v. 47, n. 4, p. 333 - 343, 2009.
dc.identifier10.1016/j.freeradbiomed.2009.05.004
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-67649866121&partnerID=40&md5=9dafbc7e249d2ca44ea4a2020960603c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91999
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91999
dc.identifier2-s2.0-67649866121
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1262735
dc.descriptionMitochondria are a quantitatively relevant source of reactive oxygen species (ROS) in the majority of cell types. Here we review the sources and metabolism of ROS in this organelle, including the conditions that regulate the production of these species, such as mild uncoupling, oxygen tension, respiratory inhibition, Ca2+ and K+ transport, and mitochondrial content and morphology. We discuss substrate-, tissue-, and organism-specific characteristics of mitochondrial oxidant generation. Several aspects of the physiological and pathological roles of mitochondrial ROS production are also addressed. © 2009 Elsevier Inc. All rights reserved.
dc.description47
dc.description4
dc.description333
dc.description343
dc.descriptionHinkle, P.C., Butow, R.A., Racker, E., Chance, B., Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles (1967) J. Biol. Chem., 242, pp. 5169-5173
dc.descriptionJensen, P.K., Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation (1966) Biochim. Biophys. Acta, 122, pp. 157-166
dc.descriptionLoschen, G., Azzi, A., Flohé, L., Mitochondrial H2O2 formation: relationship with energy conservation (1973) FEBS Lett., 33, pp. 84-87
dc.descriptionBoveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration (1975) FEBS Lett., 54, pp. 311-314
dc.descriptionForman, H.J., Kennedy, J.A., Role of superoxide radical in mitochondrial dehydrogenase reactions (1974) Biochem. Biophys. Res. Commun., 60, pp. 1044-1050
dc.descriptionLoschen, G., Azzi, A., Richter, C., Flohé, L., Superoxide radicals as precursors of mitochondrial hydrogen peroxide (1974) FEBS Lett., 42, pp. 68-72
dc.descriptionWeisiger, R.A., Fridovich, I., Superoxide dismutase: organelle specificity (1973) J. Biol. Chem., 248, pp. 3582-3592
dc.descriptionWeisiger, R.A., Fridovich, I., Mitochondrial superoxide simutase: site of synthesis and intramitochondrial localization (1973) J. Biol. Chem., 248, pp. 4793-4796
dc.descriptionDröge, W., Free radicals in the physiological control of cell function (2002) Physiol. Rev., 82, pp. 47-95
dc.descriptionFridovich, I., Superoxide radical and superoxide dismutases (1995) Annu. Rev. Biochem., 64, pp. 97-112
dc.descriptionOkado-Matsumoto, A., Fridovich, I., Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria (2001) J. Biol. Chem., 276, pp. 38388-38393
dc.descriptionLiu, Y., Fiskum, G., Schubert, D., Generation of reactive oxygen species by the mitochondrial electron transport chain (2002) J. Neurochem., 80, pp. 780-787
dc.descriptionLambertucci, R.H., Hirabara, S.M., Silveira, L.D.R., Levada-Pires, A.C., Curi, R., Pithon-Curi, T.C., Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells (2008) J. Cell. Physiol., 216, pp. 796-804
dc.descriptionTretter, L., Takacs, K., Hegedus, V., Adam-Vizi, V., Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria (2007) J. Neurochem., 100, pp. 650-663
dc.descriptionTretter, L., Takacs, K., Kövér, K., Adam-Vizi, V., Stimulation of H2O2 generation by calcium in brain mitochondria respiring on alpha-glycerophosphate (2007) J. Neurosci. Res., 85, pp. 3471-3479
dc.descriptionLenaz, G., The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology (2001) IUBMB Life, 52, pp. 159-164
dc.descriptionStarkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M.S., Beal, M.F., Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species (2004) J. Neurosci., 24, pp. 7779-7788
dc.descriptionTretter, L., Adam-Vizi, V., Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase (2004) J. Neurosci., 24, pp. 7771-7778
dc.descriptionTahara, E.B., Barros, M.H., Oliveira, G.A., Netto, L.E.S., Kowaltowski, A.J., Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging (2007) FASEB J., 21, pp. 274-283
dc.descriptionJohnson, D.T., Harris, R.A., French, S., Blair, P.V., You, J., Bemis, K.G., Wang, M., Balaban, R.S., Tissue heterogeneity of the mammalian mitochondrial proteome (2007) Am. J. Physiol. Cell Physiol., 292, pp. C689-697
dc.descriptionJohnson, D.T., Harris, R.A., Blair, P.V., Balaban, R.S., Functional consequences of mitochondrial proteome heterogeneity (2007) Am. J. Physiol. Cell Physiol., 292, pp. C698-707
dc.descriptionSturtz, L.A., Diekert, K., Jensen, L.T., Lill, R., Culotta, V.C.A., fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage (2001) J. Biol. Chem., 276, pp. 38084-38089
dc.descriptionSantiago, A.P.S.A., Chaves, E.A., Oliveira, M.F., Galina, A., Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues (2008) Biochimie, 90, pp. 1566-1577
dc.descriptionTahara, E.B., Navarete, F.D., Kowaltowski, A.J., Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation (2009) Free Radic. Biol. Med., 46, pp. 1283-1297
dc.descriptionCapel, F., Rimbert, V., Lioger, D., Diot, A., Rousset, P., Mirand, P.P., Boirie, Y., Mosoni, L., Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved (2005) Mech. Ageing Dev., 126, pp. 505-511
dc.descriptionFornazari, M., de Paula, J.G., Castilho, R.F., Kowaltowski, A.J., Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria (2008) J. Neurosci. Res., 86, pp. 1548-1556
dc.descriptionGrivennikova, V.G., Vinogradov, A.D., Generation of superoxide by the mitochondrial complex I (2006) Biochim. Biophys. Acta, 1757, pp. 553-561
dc.descriptionBarros, M.H., Bandy, B., Tahara, E.B., Kowaltowski, A.J., Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae (2004) J. Biol. Chem., 279, pp. 49883-49888
dc.descriptionOliveira, G.A., Tahara, E.B., Gombert, A.K., Barros, M.H., Kowaltowski, A.J., Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span (2008) J. Bioenerg. Biomembr., 40, pp. 381-388
dc.descriptionCavalheiro, R.A., Fortes, F., Borecký, J., Faustinoni, V.C., Schreiber, A.Z., Vercesi, A.E., Respiration, oxidative phosphorylation, and uncoupling protein in Candida albicans (2004) Braz. J. Med. Biol. Res., 37, pp. 1455-1461
dc.descriptionJarmuszkiewicz, W., Milani, G., Fortes, F., Schreiber, A.Z., Sluse, F.E., Vercesi, A.E., First evidence and characterization of an uncoupling protein in Fungi kingdom: cpUCP of Candida parapsilosis (2000) FEBS Lett., 467, pp. 145-149
dc.descriptionMilani, G., Jarmuszkiewicz, W., Sluse-Goffart, C.M., Schreiber, A.Z., Vercesi, A.E., Sluse, F.E., Respiratory chain network in mitochondria of Candida parapsilosis: ADP/O appraisal of the multiple electron pathways (2001) FEBS Lett., 508, pp. 231-235
dc.descriptionLebovitz, R.M., Zhang, H., Vogel, H., Cartwright, J.J., Dionne, L., Lu, N., Huang, S., Matzuk, M.M., Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 9782-9787
dc.descriptionRuy, F., Vercesi, A.E., Kowaltowski, A.J., Inhibition of specific electron transport pathways leads to oxidative stress and decreased Candida albicans proliferation (2006) J. Bioenerg. Biomembr., 38, pp. 129-135
dc.descriptionAffourtit, C., Krab, K., Moore, A.L., Control of plant mitochondrial respiration (2001) Biochim. Biophys. Acta, 1504, pp. 58-69
dc.descriptionAlmeida, A.M., Navet, R., Jarmuszkiewicz, W., Vercesi, A.E., Sluse-Goffart, C.M., Sluse, F.E., The energy-conserving and energy-dissipating processes in mitochondria isolated from wild type and nonripening tomato fruits during development on the plant (2002) J. Bioenerg. Biomembr., 34, pp. 487-498
dc.descriptionBorecky, J., Nogueira, F.T.S., de Oliveira, K.A.P., Maia, I.G., Vercesi, A.E., Arruda, P., The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots (2006) J. Exp. Bot., 57, pp. 849-864
dc.descriptionBorecký, J., Vercesi, A.E., Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress (2005) Biosci. Rep., 25, pp. 271-286
dc.descriptionBrandalise, M., Maia, I.G., Borecký, J., Vercesi, A.E., Arruda, P., Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress (2003) J. Bioenerg. Biomembr., 35, pp. 203-209
dc.descriptionClifton, R., Millar, A.H., Whelan, J., Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses (2006) Biochim. Biophys. Acta, 1757, pp. 730-741
dc.descriptionCosta, A.D., Nantes, I.L., Jezek, P., Leite, A., Arruda, P., Vercesi, A.E., Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening (1999) J. Bioenerg. Biomembr., 31, pp. 527-533
dc.descriptionVercesi, A., Martins, I., Silva, M., Leite, H., Cuccovia, I., Chalmovich, H., Pumping plants (1995) Nature, 375, p. 24
dc.descriptionVercesi, A.E., Borecký, J., Maia, I.D.G., Arruda, P., Cuccovia, I.M., Chaimovich, H., Plant uncoupling mitochondrial proteins (2006) Annu. Rev. Plant Biol., 57, pp. 383-404
dc.descriptionLi, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Epstein, C.J., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase (1995) Nat. Genet., 11, pp. 376-381
dc.descriptionSluse, F.E., Jarmuszkiewicz, W., Uncoupling proteins outside the Animal and Plant kingdoms: functional and evolutionary aspects (2002) FEBS Lett., 510, pp. 117-120
dc.descriptionBrookes, P.S., Mitochondrial H+ leak and ROS generation: an odd couple (2005) Free Radic. Biol. Med., 38, pp. 12-23
dc.descriptionCaldeira da Silva, C.C., Cerqueira, F.M., Barbosa, L.F., Medeiros, M.H.G., Kowaltowski, A.J., Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity (2008) Aging Cell, 7, pp. 552-560
dc.descriptionKorshunov, S.S., Skulachev, V.P., Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria (1997) FEBS Lett., 416, pp. 15-18
dc.descriptionKowaltowski, A.J., Costa, A.D., Vercesi, A.E., Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain (1998) FEBS Lett., 425, pp. 213-216
dc.descriptionPopov, V.N., Simonian, R.A., Skulachev, V.P., Starkov, A.A., Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria (1997) FEBS Lett., 415, pp. 87-90
dc.descriptionSkulachev, V.P., Uncoupling: new approaches to an old problem of bioenergetics (1998) Biochim. Biophys. Acta, 1363, pp. 100-124
dc.descriptionCzarna, M., Jarmuszkiewicz, W., Activation of alternative oxidase and uncoupling protein lowers hydrogen peroxide formation in amoeba Acanthamoeba castellanii mitochondria (2005) FEBS Lett., 579, pp. 3136-3140
dc.descriptionFerranti, R., da Silva, M.M., Kowaltowski, A.J., Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation (2003) FEBS Lett., 536, pp. 51-55
dc.descriptionNègre-Salvayre, A., Hirtz, C., Carrera, G., Cazenave, R., Troly, M., Salvayre, R., Pénicaud, L., Casteilla, L., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation (1997) FASEB J., 11, pp. 809-815
dc.descriptionMelov, S., Doctrow, S.R., Schneider, J.A., Haberson, J., Patel, M., Coskun, P.E., Huffman, K., Malfroy, B., Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics (2001) J. Neurosci., 21, pp. 8348-8353
dc.descriptionFacundo, H.T.F., Carreira, R.S., de Paula, J.G., Santos, C.C.X., Ferranti, R., Laurindo, F.R.M., Kowaltowski, A.J., Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity (2006) Free Radic. Biol. Med., 40, pp. 469-479
dc.descriptionVanden Hoek, T., Becker, L.B., Shao, Z.H., Li, C.Q., Schumacker, P.T., Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion (2000) Circ. Res., 86, pp. 541-548
dc.descriptionEchtay, K.S., Brand, M., D. 4-Hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production (2007) Redox Rep., 12, pp. 26-29
dc.descriptionEchtay, K.S., Roussel, D., St-Pierre, J., Jekabsons, M.B., Cadenas, S., Stuart, J.A., Harper, J.A., Brand, M.D., Superoxide activates mitochondrial uncoupling proteins (2002) Nature, 415, pp. 96-99
dc.descriptionEchtay, K.S., Murphy, M.P., Smith, R.A.J., Talbot, D.A., Brand, M.D., Superoxide activates mitochondrial uncoupling protein 2 from the matrix side: studies using targeted antioxidants (2002) J. Biol. Chem., 277, pp. 47129-47135
dc.descriptionCosta, A.D.T., Garlid, K.D., Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT (2008) Am. J. Physiol. Heart Circ. Physiol., 295, pp. H874-H882
dc.descriptionZhang, D.X., Chen, Y.F., Campbell, W.B., Zou, A.P., Gross, G.J., Li, P.L., Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels (2001) Circ. Res., 89, pp. 1177-1183
dc.descriptionRhoads, D.M., Umbach, A.L., Sweet, C.R., Lennon, A.M., Rauch, G.S., Siedow, J.N., Regulation of the cyanide-resistant alternative oxidase of plant mitochondria: identification of the cysteine residue involved in alpha-keto acid stimulation and intersubunit disulfide bond formation (1998) J. Biol. Chem., 273, pp. 30750-30756
dc.descriptionJezek, P., Engstová, H., Zácková, M., Vercesi, A.E., Costa, A.D., Arruda, P., Garlid, K.D., Fatty acid cycling mechanism and mitochondrial uncoupling proteins (1998) Biochim. Biophys. Acta, 1365, pp. 319-327
dc.descriptionAlberici, L.C., Oliveira, H.C.F., Patrício, P.R., Kowaltowski, A.J., Vercesi, A.E., Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+ channel activity (2006) Gastroenterology, 131, pp. 1228-1234
dc.descriptionBienert, G.P., Schjoerring, J.K., Jahn, T.P., Membrane transport of hydrogen peroxide (2006) Biochim. Biophys. Acta, 1758, pp. 994-1003
dc.descriptionPaucek, P., Yarov-Yarovoy, V., Sun, X., Garlid, K.D., Inhibition of the mitochondrial KATP channel by long-chain acyl-CoA esters and activation by guanine nucleotides (1996) J. Biol. Chem., 271, pp. 32084-32088
dc.descriptionMeyer, L.E., Machado, L.B., Santiago, A.P.S.A., da-Silva, W.S., De Felice, F.G., Holub, O., Oliveira, M.F., Galina, A., Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity (2006) J. Biol. Chem., 281, pp. 37361-37371
dc.descriptionda-Silva, W.S., Gómez-Puyou, A., de Gómez-Puyou, M.T., Moreno-Sanchez, R., De Felice, F.G., de Meis, L., Oliveira, M.F., Galina, A., Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria (2004) J. Biol. Chem., 279, pp. 39846-39855
dc.descriptionAndersen, J.K., Oxidative stress in neurodegeneration: cause or consequence? (2004) Nat. Med., 10, pp. S18-25
dc.descriptionCalabrese, V., Lodi, R., Tonon, C., D'Agata, V., Sapienza, M., Scapagnini, G., Mangiameli, A., Butterfield, D.A., Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia (2005) J. Neurol. Sci., 233, pp. 145-162
dc.descriptionFiskum, G., Mitochondrial participation in ischemic and traumatic neural cell death (2000) J. Neurotrauma, 17, pp. 843-855
dc.descriptionFukui, H., Moraes, C.T., The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? (2008) Trends Neurosci., 31, pp. 251-256
dc.descriptionGeromel, V., Kadhom, N., Cebalos-Picot, I., Ouari, O., Polidori, A., Munnich, A., Rötig, A., Rustin, P., Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA (2001) Hum. Mol. Genet., 10, pp. 1221-1228
dc.descriptionSousa, S.C., Castilho, R.F., Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death (2005) Antioxid. Redox Signaling, 7, pp. 1110-1116
dc.descriptionKowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (1999) Free Radic. Biol. Med., 26, pp. 463-471
dc.descriptionLee, W.K., Thévenod, F., A role for mitochondrial aquaporins in cellular life-and-death decisions? (2006) Am. J. Physiol. Cell Physiol., 291, pp. 195-202
dc.descriptionBirket, M.J., Passos, J.F., von Zglinicki, T., Birch-Machin, M.A., The relationship between the aging- and photo-dependent T414G mitochondrial DNA mutation with cellular senescence and reactive oxygen species production in cultured skin fibroblasts (2009) J. Invest. Dermatol., 129, pp. 1361-1366
dc.descriptionGonzalo, R., Garcia-Arumi, E., Llige, D., Marti, R., Solano, A., Montoya, J., Arenas, J., Andreu, A.L., Free radicals-mediated damage in transmitochondrial cells harboring the T14487C mutation in the ND6 gene of mtDNA (2005) FEBS Lett., 579, pp. 6909-6913
dc.descriptionLi, J., Zhou, K., Meng, X., Wu, Q., Li, S., Liu, Y., Wang, J., Increased ROS generation and SOD activity in heteroplasmic tissues of transmitochondrial mice with A3243G mitochondrial DNA mutation (2008) Genet. Mol. Res., 7, pp. 1054-1062
dc.descriptionMenzies, K.J., Robinson, B.H., Hood, D.A., Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from pa
dc.descriptionHolmgren, A., Antioxidant function of thioredoxin and glutaredoxin systems (2000) Antioxid. Redox Signaling, 2, pp. 811-820
dc.descriptionNordberg, J., Arnér, E.S., Reactive oxygen species, antioxidants, and the mammalian thioredoxin system (2001) Free Radic. Biol. Med., 31, pp. 1287-1312
dc.descriptionDalton, T.P., Shertzer, H.G., Puga, A., Regulation of gene expression by reactive oxygen (1999) Annu. Rev. Pharmacol. Toxicol., 39, pp. 67-101
dc.descriptionCarreira, R.S., Miyamoto, S., Di Mascio, P., Gonçalves, L.M., Monteiro, P., Providência, L.A., Kowaltowski, A.J., Ischemic preconditioning enhances fatty acid-dependent mitochondrial uncoupling (2007) J. Bioenerg. Biomembr., 39, pp. 313-320
dc.descriptionFacundo, H.T.F., de Paula, J.G., Kowaltowski, A.J., Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production (2007) Free Radic. Biol. Med., 42, pp. 1039-1048
dc.descriptionTalbot, D.A., Hanuise, N., Rey, B., Rouanet, J., Duchamp, C., Brand, M.D., Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus) (2003) Biochem. Biophys. Res. Commun., 312, pp. 983-988
dc.descriptionTalbot, D.A., Lambert, A.J., Brand, M.D., Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3 (2004) FEBS Lett., 556, pp. 111-115
dc.descriptionRadi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D., Freeman, B.A., Detection of catalase in rat heart mitochondria (1991) J. Biol. Chem., 266, pp. 22028-22034
dc.descriptionSalvi, M., Battaglia, V., Brunati, A.M., La Rocca, N., Tibaldi, E., Pietrangeli, P., Marcocci, L., Toninello, A., Catalase takes part in rat liver mitochondria oxidative stress defense (2007) J. Biol. Chem., 282, pp. 24407-24415
dc.descriptionPetrova, V.Y., Drescher, D., Kujumdzieva, A.V., Schmitt, M.J., Dual targeting of yeast catalase A to peroxisomes and mitochondria (2004) Biochem. J., 380, pp. 393-400
dc.descriptionArnér, E.S., Holmgren, A., Physiological functions of thioredoxin and thioredoxin reductase (2000) Eur. J. Biochem., 267, pp. 6102-6109
dc.descriptionHofmann, B., Hecht, H., Flohé, L., Peroxiredoxins (2002) Biol. Chem., 383, pp. 347-364
dc.descriptionPedrajas, J.R., Miranda-Vizuete, A., Javanmardy, N., Gustafsson, J.A., Spyrou, G., Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity (2000) J. Biol. Chem., 275, pp. 16296-16301
dc.descriptionMonteiro, G., Horta, B.B., Pimenta, D.C., Augusto, O., Netto, L.E.S., Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 4886-4891
dc.descriptionRydström, J., Mitochondrial NADPH, transhydrogenase and disease (2006) Biochim. Biophys. Acta, 1757, pp. 721-726
dc.descriptionCastilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J., Vercesi, A.E., Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria (1995) Free Radic. Biol. Med., 18, pp. 479-486
dc.descriptionKowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett., 495, pp. 12-15
dc.descriptionLehninger, A.L., Vercesi, A., Bababunmi, E.A., Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides (1978) Proc. Natl. Acad. Sci. USA, 75, pp. 1690-1694
dc.descriptionLemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Herman, B., The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury (1997) Mol. Cell. Biochem., 174, pp. 159-165
dc.descriptionVercesi, A.E., Pereira-da-Silva, L., NADP redox state and mitochondrial Ca2+ efflux: a controversial issue (1984) Braz. J. Med. Biol. Res., 17, pp. 353-356
dc.descriptionZoratti, M., Szabò, I., The mitochondrial permeability transition (1995) Biochim. Biophys. Acta, 1241, pp. 139-176
dc.descriptionSazanov, L.A., Jackson, J.B., Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria (1994) FEBS Lett., 344, pp. 109-116
dc.descriptionJo, S.H., Son, M.K., Koh, H.J., Lee, S.M., Song, I.H., Kim, Y.O., Lee, Y.S., Huh, T.L., Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase (2001) J. Biol. Chem., 276, pp. 16168-16176
dc.descriptionPaim, B.A., Velho, J.A., Castilho, R.F., Oliveira, H.C.F., Vercesi, A.E., Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADPH-linked substrates and is partially reversed by citrate replacement (2008) Free Radic. Biol. Med., 44, pp. 444-451
dc.descriptionOliveira, H.C.F., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Velho, J.A., Vercesi, A.E., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J., 19, pp. 278-280
dc.descriptionHalliwell, B., Gutteridge, J.M., Role of free radicals and catalytic metal ions in human disease: an overview (1990) Methods Enzymol., 186, pp. 1-85
dc.descriptionKakhlon, O., Manning, H., Breuer, W., Melamed-Book, N., Lu, C., Cortopassi, G., Munnich, A., Cabantchik, Z.I., Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation (2008) Blood, 112, pp. 5219-5227
dc.descriptionMoncada, S., Higgs, A., The l-arginine-nitric oxide pathway (1993) N. Engl. J. Med., 329, pp. 2002-2012
dc.descriptionRadi, R., Cassina, A., Hodara, R., Nitric oxide and peroxynitrite interactions with mitochondria (2002) Biol. Chem., 383, pp. 401-409
dc.descriptionBates, T.E., Loesch, A., Burnstock, G., Clark, J.B., Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? (1996) Biochem. Biophys. Res. Commun., 218, pp. 40-44
dc.descriptionFrandsen, U., Lopez-Figueroa, M., Hellsten, Y., Localization of nitric oxide synthase in human skeletal muscle (1996) Biochem. Biophys. Res. Commun., 227, pp. 88-93
dc.descriptionKobzik, L., Stringer, B., Balligand, J.L., Reid, M.B., Stamler, J.S., Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships (1995) Biochem. Biophys. Res. Commun., 211, pp. 375-381
dc.descriptionGhafourifar, P., Richter, C., Nitric oxide synthase activity in mitochondria (1997) FEBS Lett., 418, pp. 291-296
dc.descriptionGiulivi, C., Poderoso, J.J., Boveris, A., Production of nitric oxide by mitochondria (1998) J. Biol. Chem., 273, pp. 11038-11043
dc.descriptionGiulivi, C., Characterization and function of mitochondrial nitric-oxide synthase (2003) Free Radic. Biol. Med., 34, pp. 397-408
dc.descriptionBrookes, P.S., Mitochondrial nitric oxide synthase (2004) Mitochondrion, 3, pp. 187-204
dc.descriptionNavarro, A., Boveris, A., Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants (2008) Adv. Drug Delivery Rev., 60, pp. 1534-1544
dc.descriptionBasu, S., Azarova, N.A., Font, M.D., King, S.B., Hogg, N., Gladwin, M.T., Shiva, S., Kim-Shapiro, D.B., Nitrite reductase activity of cytochrome c (2008) J. Biol. Chem., 283, pp. 32590-32597
dc.descriptionCastello, P.R., David, P.S., McClure, T., Crook, Z., Poyton, R.O., Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes (2006) Cell Metab., 3, pp. 277-287
dc.descriptionModolo, L.V., Augusto, O., Almeida, I.M.G., Magalhaes, J.R., Salgado, I., Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae (2005) FEBS Lett., 579, pp. 3814-3820
dc.descriptionBrown, G.C., Cooper, C.E., Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase (1994) FEBS Lett., 356, pp. 295-298
dc.descriptionCleeter, M.W., Cooper, J.M., Darley-Usmar, V.M., Moncada, S., Schapira, A.H., Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative diseases (1994) FEBS Lett., 345, pp. 50-54
dc.descriptionBolli, R., Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research (2001) J. Mol. Cell. Cardiol., 33, pp. 1897-1918
dc.descriptionFerdinandy, P., Schulz, R., Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning (2003) Br. J. Pharmacol., 138, pp. 532-543
dc.descriptionRadi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., Peroxynitrite oxidation of sulfhydryls. the cytotoxic potential of superoxide and nitric oxide (1991) J. Biol. Chem., 266, pp. 4244-4250
dc.descriptionLandino, L.M., Iwig, J.S., Kennett, K.L., Moynihan, K.L., Repair of peroxynitrite damage to tubulin by the thioredoxin reductase system (2004) Free Radic. Biol. Med., 36, pp. 497-506
dc.descriptionBrown, G.C., Borutaite, V., Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols (2004) Biochim. Biophys. Acta, 1658, pp. 44-49
dc.descriptionGadelha, F.R., Thomson, L., Fagian, M.M., Costa, A.D., Radi, R., Vercesi, A.E., Ca2+-independent permeabilization of the inner mitochondrial membrane by peroxynitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation (1997) Arch. Biochem. Biophys., 345, pp. 243-250
dc.descriptionBonini, M.G., Radi, R., Ferrer-Sueta, G., Ferreira, A.M., Augusto, O., Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide (1999) J. Biol. Chem., 274, pp. 10802-10806
dc.descriptionMedinas, D.B., Cerchiaro, G., Trindade, D.F., Augusto, O., The carbonate radical and related oxidants derived from bicarbonate buffer (2007) IUBMB Life, 59, pp. 255-262
dc.descriptionBerneburg, M., Grether-Beck, S., Kürten, V., Ruzicka, T., Briviba, K., Sies, H., Krutmann, J., Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion (1999) J. Biol. Chem., 274, pp. 15345-15349
dc.descriptionCosso, R.G., Turim, J., Nantes, I.L., Almeida, A.M., Di Mascio, P., Vercesi, A.E., Mitochondrial permeability transition induced by chemically generated singlet oxygen (2002) J. Bioenerg. Biomembr., 34, pp. 157-163
dc.descriptionAlmeida, R.D., Manadas, B.J., Carvalho, A.P., Duarte, C.B., Intracellular signaling mechanisms in photodynamic therapy (2004) Biochim. Biophys. Acta, 1704, pp. 59-86
dc.descriptionEngelmann, F.M., Mayer, I., Gabrielli, D.S., Toma, H.E., Kowaltowski, A.J., Araki, K., Baptista, M.S., Interaction of cationic meso-porphyrins with liposomes, mitochondria and erythrocytes (2007) J. Bioenerg. Biomembr., 39, pp. 175-185
dc.descriptionGabrielli, D., Belisle, E., Severino, D., Kowaltowski, A.J., Baptista, M.S., Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions (2004) Photochem. Photobiol., 79, pp. 227-232
dc.descriptionInada, N.M., da Silva, A.R., Jorge, R.A., Borecký, J., Vercesi, A.E., Irradiated cationic mesoporphyrin induces larger damage to isolated rat liver mitochondria than the anionic form (2007) Arch. Biochem. Biophys., 457, pp. 217-224
dc.descriptionOchsner, M., Photophysical and photobiological processes in the photodynamic therapy of tumours (1997) J. Photochem. Photobiol. B Biol., 39, pp. 1-18
dc.descriptionDanial, N.N., Korsmeyer, S.J., Cell death: critical control points (2004) Cell, 116, pp. 205-219
dc.descriptionNantes, I.L., Faljoni-Alario, A., Vercesi, A.E., Santos, K.E., Bechara, E.J., Liposome effect on the cytochrome c-catalyzed peroxidation of carbonyl substrates to triplet species (1998) Free Radic. Biol. Med., 25, pp. 546-553
dc.descriptionKenten, R.H., The oxidation of phenyl-acetaldehyde by plant saps (1953) Biochem. J., 55, pp. 350-360
dc.descriptionKnudsen, F.D., Campa, A., Stefani, H.A., Cilento, G., Plant hormone ethylene is a norrish type II product from enzymically generated triplet 1-butanal (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 410-412
dc.descriptionNantes, I.L., Cilento, G., Bechara, E.J., Vercesi, A.E., Chemiluminescent diphenylacetaldehyde oxidation by mitochondria is promoted by cytochromes and leads to oxidative injury of the organelle (1995) Photochem. Photobiol., 62, pp. 522-527
dc.descriptionWinterbourn, C.C., Hampton, M.B., Thiol chemistry and specificity in redox signaling (2008) Free Radic. Biol. Med., 45, pp. 549-561
dc.descriptionCadenas, E., Davies, K.J., Mitochondrial free radical generation, oxidative stress, and aging (2000) Free Radic. Biol. Med., 29, pp. 222-230
dc.descriptionMurphy, M.P., How mitochondria produce reactive oxygen species (2009) Biochem. J., 417, pp. 1-13
dc.descriptionTurrens, J.F., Mitochondrial formation of reactive oxygen species (2003) J. Physiol. (London), 552, pp. 335-344
dc.descriptionWosniak, J.J., Santos, C.X.C., Kowaltowski, A.J., Laurindo, F., Cross-talk between mitochondria and NADPH oxidase: effects of mild mitochondrial dysfunction on angiotensin II mediated increase in NOX isoform expression and activity in vascular smooth muscle cells (2009) Antioxid. Redox Signaling, 11, pp. 1265-1278
dc.descriptionBoveris, A., Cadenas, E., Stoppani, A.O., Role of ubiquinone in the mitochondrial generation of hydrogen peroxide (1976) Biochem. J., 156, pp. 435-444
dc.descriptionCadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O., Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria (1977) Arch. Biochem. Biophys., 180, pp. 248-257
dc.descriptionLoschen, G., Azzi, A., On the formation of hydrogen peroxide and oxygen radicals in heart mitochondria (1975) Recent Adv. Stud. Cardiac Struct. Metab., 7, pp. 3-12
dc.descriptionNicholls, D., Fergusson, S., (2001) Bioenergetics 3, , Academic Press, San Diego
dc.descriptionBarros, M.H., Netto, L.E.S., Kowaltowski, A.J., H2O2 generation in Saccharomyces cerevisiae respiratory PET mutants: effect of cytochrome c (2003) Free Radic. Biol. Med., 35, pp. 179-188
dc.descriptionGiannattasio, S., Atlante, A., Antonacci, L., Guaragnella, N., Lattanzio, P., Passarella, S., Marra, E., Cytochrome c is released from coupled mitochondria of yeast en route to acetic acid-induced programmed cell death and can work as an electron donor and a ROS scavenger (2008) FEBS Lett., 582, pp. 1519-1525
dc.descriptionPereverzev, M.O., Vygodina, T.V., Konstantinov, A.A., Skulachev, V.P., Cytochrome c, an ideal antioxidant (2003) Biochem. Soc. Trans., 31, pp. 1312-1315
dc.descriptionSkulachev, V.P., Cytochrome c in the apoptotic and antioxidant cascades (1998) FEBS Lett., 423, pp. 275-280
dc.descriptionDröse, S., Brandt, U., The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex (2008) J. Biol. Chem., 283, pp. 21649-21654
dc.descriptionKwong, L.K., Sohal, R.S., Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria (1998) Arch. Biochem. Biophys., 350, pp. 118-126
dc.descriptionTurrens, J.F., Alexandre, A., Lehninger, A.L., Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria (1985) Arch. Biochem. Biophys., 237, pp. 408-414
dc.descriptionHan, D., Williams, E., Cadenas, E., Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space (2001) Biochem. J., 353, pp. 411-416
dc.descriptionSt-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain (2002) J. Biol. Chem., 277, pp. 44784-44790
dc.descriptionMuller, F.L., Liu, Y., Van Remmen, H., Complex III releases superoxide to both sides of the inner mitochondrial membrane (2004) J. Biol. Chem., 279, pp. 49064-49073
dc.descriptionLambert, A.J., Brand, M.D., Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I) (2004) J. Biol. Chem., 279, pp. 39414-39420
dc.descriptionYankovskaya, V., Horsefield, R., Törnroth, S., Luna-Chavez, C., Miyoshi, H., Léger, C., Byrne, B., Iwata, S., Architecture of succinate dehydrogenase and reactive oxygen species generation (2003) Science, 299, pp. 700-704
dc.relationFree Radical Biology and Medicine
dc.rightsfechado
dc.sourceScopus
dc.titleMitochondria And Reactive Oxygen Species
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución