dc.creatorDuval L.
dc.creatorDuarte L.T.
dc.creatorJutten C.
dc.date2013
dc.date2015-06-25T19:19:24Z
dc.date2015-11-26T15:17:24Z
dc.date2015-06-25T19:19:24Z
dc.date2015-11-26T15:17:24Z
dc.date.accessioned2018-03-28T22:27:07Z
dc.date.available2018-03-28T22:27:07Z
dc.identifier9781479903566
dc.identifierIcassp, Ieee International Conference On Acoustics, Speech And Signal Processing - Proceedings. , v. , n. , p. 8742 - 8746, 2013.
dc.identifier15206149
dc.identifier10.1109/ICASSP.2013.6639373
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84890484448&partnerID=40&md5=535fbcd086d6ec7e526748073d7569ac
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89946
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89946
dc.identifier2-s2.0-84890484448
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1259442
dc.descriptionThis tutorial paper1 aims at summarizing some problems, ranging from analytical chemistry to novel chemical sensors, that can be addressed with classical or advanced methods of signal and image processing. We gather them under the denomination of 'chemical sensing'. It is meant to introduce the special session 'Signal Processing for Chemical Sensing' with a large overview of issues which have been and remain to be addressed in this application domain, including chemical analysis leading to PARAFAC/tensor methods, hyper spectral imaging, ion-sensitive sensors, artificial nose, chromatography, mass spectrometry, etc. For enlarging and illustrating the points of view of this tutorial, the invited papers of the session consider other applications (NMR, Raman spectroscopy, recognition of explosive compounds, etc.) addressed by various methods, e.g. source separation, Bayesian, and exploiting typical chemical signal priors like positivity, linearity, unit-concentration or sparsity. © 2013 IEEE.
dc.description
dc.description
dc.description8742
dc.description8746
dc.descriptionIEE Signal Processing Society
dc.descriptionAmigo, J.M., Skov, T., Bro, R., Chromathography: Solving chromatographic issues with mathematical models and intuitive graphics (2010) Chem. Rev., 110 (8), pp. 4582-4605
dc.descriptionBro, R., PARAFAC. Tutorial and applications (1997) Chemometr. Intell. Lab. Syst., 38 (2), pp. 149-171
dc.descriptionSavitzky, A., Golay, M.J.E., Smoothing and differentiation of data by simplified least squares procedures (1964) Anal. Chem., 36 (8), pp. 1627-1639. , July
dc.descriptionRiordon, J., Zubritsky, E., Newman, A., Analytical chemistry looks at 10 seminal papers (2000) Anal. Chem., 72
dc.descriptionChen, D., Chen, Y., Xue, D., Digital fractional order savitzky-golay differentiator (2011) IEEE Trans. Circ. Syst. II, 58 (11), pp. 758-762. , Nov
dc.descriptionSchafer, R.W., What is a savitzky-golay filter (2011) IEEE Signal Process. Mag., 28 (4), pp. 111-117. , Jul
dc.descriptionWold, S., Chemometrics
dc.descriptionWhat do we mean with it, and what do we want from it (1995) Chemometr. Intell. Lab. Syst., 30, pp. 109-115
dc.descriptionFelinger, A., (1998) Data Analysis and Signal Processing in Chromatography, , Elsevier
dc.descriptionLynch, J., (2003) Physico-Chemical Analysis of Industrial Catalysts A Practical Guide to Characterisation, , Edition Technip, Sep
dc.descriptionChau, F.-T., Liang, Y.-Z., Gao, J., Shao, X.-G., (2004) Chemometrics: From Basics to Wavelet Transform, 164. , Wiley-Interscience
dc.descriptionBrown, S.D., Tauler, R., Walczak, B., (2009) Comprehensive Chemometrics: Chemical and Biochemical Data Analysis, , Elsevier
dc.descriptionLiu, Z., Phillips, J.B., Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface (1991) J. Chromatogr. Sci., 29 (6), pp. 227-231
dc.descriptionVendeuvre, C., Bertoncini, F., Duval, L., Duplan, J.-L., Thiebaut, D., Hennion, M.-C., Comparison of conventional gas chromatography and comprehensive twodimensional gas chromatography for the detailed analysis of petrochemical samples (2004) J. Chrom. A, 1056 (1-2), pp. 155-162
dc.descriptionReichenbach, S.E., Ni, M., Zhang, D., Ledford, E.B., Image background removal in comprehensive two-dimensional gas chromatography (2003) J. Chrom. A, 985 (1-2), pp. 47-56
dc.descriptionSchoenmakers, P.J., Oomen, J.L.M.M., Blomberg, J., Genuit, W., Van Velzen, G., Comparison of comprehensive two-dimensional gas chromatography and gas chromatography-mass spectrometry for the characterization of complex hydrocarbon mixtures (2000) J. Chrom. A, 892 (1-2), pp. 29-46
dc.descriptionGottschalk, G., Zukunftsaspekte der Analytik. Moderne Grundlagen und Ziele (1972) Fresenius Z. Anal. Chem., 258, pp. 1-12
dc.descriptionPhillips, J.B., Signal processing techniques in analytical instruments (1982) Trends Anal. Chem., 1 (7), pp. 163-166
dc.descriptionWentzell, P.D., Brown, C.D., Signal processing in analytical chemistry (2000) Encyclopedia of Analytical Chemistry, , R. A. Meyers, Ed. JohnWiley &Sons Ltd
dc.descriptionOho, E., Reduction in acquisition time of scanning electron microscopy image using complex hysteresis smoothing (2004) Scanning, 26 (3), pp. 140-146
dc.descriptionDavis, J.M., Stoll, D.R., Carr, P.W., Effect of first-dimension undersampling on effective peak capacity in comprehensive two-dimensional separations (2008) Anal. Chem., 80 (2), pp. 461-473
dc.descriptionBeens, J., Adahchour, M., Vreuls, R.J.J., Van Altena, K., Brinkman, U., Simple, non-moving modulation interface for comprehensive two-dimensional gas chromatography (2001) J. Chrom. A, 919 (1), pp. 127-132
dc.descriptionShao, X.-G., Leung, A.K.-M., Chau, F.-T., Wavelet: A new trend in chemistry (2003) Acc. Chem. Res., 36, pp. 276-283
dc.descriptionKarim, S.A.A., Ismail, M.T., Compression of chemical signal using wavelet transform (2009) Eur. J. Sci. Res., 36, pp. 513-520
dc.descriptionCandes, E.J., Wakin, M.B., An introduction to compressive sampling (2008) IEEE Signal Process. Mag., pp. 21-30
dc.descriptionHolland, D.J., Bostock, M.J., Gladden, L.F., Nietlispach, D., Fast multidimensional NMR spectroscopy using compressed sensing (2011) Angew. Chem. Int. Ed., 50 (29), pp. 6548-6551
dc.descriptionKazimierczuk, K., Orekhov, V.Y., Accelerated nmr spectroscopy by using compressed sensing (2011) Angew. Chem. Int. Ed., 50 (24), pp. 5556-5559
dc.descriptionQu, X., Guo, D., Cao, X., Cai, S., Chen, Z., Reconstruction of self-sparse 2d nmr spectra from undersampled data in the indirect dimension (2011) Sensors, 11, pp. 8888-8909
dc.descriptionGrob, R.L., Barry, E.F., (2004) Modern Practice of Gas Chromatography, , Wiley-Interscience, 4th edition
dc.descriptionMcNulty, D.A., Macfie, H.J.H., The effect of different baseline estimators on the limit of quantification in chromatography (1997) J. Chemometrics, 11 (1), pp. 1-11
dc.descriptionMazet, V., Carteret, C., Brie, D., Idier, J., Humbert, B., Background removal from spectra by designing and minimising a non-quadratic cost function (2005) Chemometr. Intell. Lab. Syst., 76 (2), pp. 121-133
dc.descriptionAntoniadis, A., Bigot, J., Lambert-Lacroix, S., Peaks detection and alignment for mass spectrometry data (2010) J. Soc. Fr. Stat., 151 (1), pp. 17-37
dc.descriptionBaek, S.-J., Park, A., Shen, A., Hu, J., A background elimination method based on linear programming for raman spectra (2011) J. Raman Spectros
dc.descriptionSchulze, H.G., Foist, R.B., Okuda, K., Ivanov, A., Turner, R.F.B., A modelfree, fully automated baseline-removal method for raman spectra (2011) Appl. Spectrosc., 65 (1), pp. 75-84. , Jan
dc.descriptionKomsta, L., Comparison of several methods of chromatographic baseline removal with a new approach based on quantile regression (2011) Chromatographia, 73, pp. 721-731
dc.descriptionAlsberg, B.K., Woodward, A.M., Kell, D.B., An introduction to wavelet transforms for chemometricians: A time-frequency approach (1997) Chemometr. Intell. Lab. Syst., 37 (2), pp. 215-239
dc.descriptionDanielsson, R., Bylund, D., Markides, K.E., Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography-mass spectrometry (2002) Anal. Chim. Acta, 454 (2), pp. 167-184
dc.descriptionWalczak, B., (2000) Wavelets in Chemistry, , Elsevier
dc.descriptionAlbert, K.J., Lewis, N.S., Schauer, C.L., Sotzing, G.A., Stitzel, S.E., Vaid, T.P., Walt, D.R., Cross-reactive chemical sensor arrays (2000) Chem. Rev., 100 (7), pp. 2595-2626. , Jul
dc.descriptionComon, P., Jutten, C., Handbook of blind source separation (2010) Independent Component Analysis and Applications, , Academic Press, Oxford UK, Burlington USA, ISBN: 978-0-12-374726-6, 19 chapters, 830 pages. hal-00460653
dc.descriptionGrundler, P., (2007) Chemical Sensors: An Introduction for Scientists and Engineers, , Springer
dc.descriptionBedoya, G., Jutten, C., Bermejo, S., Cabestany, J., Improving semiconductorbased chemical sensor arrays using advanced algorithms for blind source separation (2004) Proc. Sensors Indust. Conf., pp. 149-154
dc.descriptionBedoya, G., Bermejo, S., Cabestany, J., Multichannel blind signal separation in semiconductor-based GAS sensor arrays (2005) Int. Work-Conf. Artif. Neural Networks, pp. 1059-1066
dc.descriptionDuarte, L.T., Jutten, C., Moussaoui, S., A bayesian nonlinear source separation method for smart ion-selective electrode arrays (2009) IEEE Sensor. J., 9 (12), pp. 1763-1771
dc.descriptionDuarte, L.T., Jutten, C., Temple-Boyer, P., Benyahia, A., Launay, J., A dataset for the design of smart ion-selective electrode arrays for quantitative analysis (2010) IEEE Sensor. J., 10 (12), pp. 1891-1892. , Dec
dc.descriptionMoussaoui, S., Brie, D., Mohammad-Djafari, A., Carteret, C., Separation of non-negative mixture of non-negative sources using a bayesian approach and mcmc sampling (2006) IEEE Trans. Signal Process., 54 (11), pp. 4133-4145
dc.descriptionVan Nederkassel, A.M., Daszykowski, M., Eilers, P.H.C., Vander Heyden, Y., A comparison of three algorithms for chromatograms alignment (2006) J. Chrom. A, 1118 (2), pp. 199-210
dc.descriptionNagle, H.T., Gutierrez-Osuna, R., Schiffman, S.S., The how and why of electronic noses (1998) IEEE Spectrum, 35 (9), pp. 22-31. , Sep
dc.descriptionVlasov, Y.G., Legin, A.V., Rudnitskaya, A.M., D'amico, A., Di Natale, C., Electronic tongue: New analytical tool for liquid analysis on the basis of nonspecific sensors and methods of pattern recognition (2000) Sensor. Actuator. B Chem., 65, pp. 235-236
dc.descriptionPardo, M., Sberveglieri, G., Learning from data: A tutorial with emphasis on modern pattern recognition methods (2002) IEEE Sensor. J., 2 (3), pp. 203-217. , Jun
dc.descriptionSamoilov, M., Arkin, A., Ross, J., Signal processing by simple chemical systems (2002) J. Phys. Chem. A, 106 (43), pp. 10205-10221
dc.descriptionhttp://www.laurent-duval.eu/siva-paper-2013-signalprocessing-chemical- sensing.htmlhttp://www.olfactionsociety.org/content/ieee-taskforce-mputational- intelligence-chemometrics-andchemical-sensing
dc.languageen
dc.publisher
dc.relationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleAn Overview Of Signal Processing Issues In Chemical Sensing
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución