dc.creatorAutreto P.A.
dc.creatorDe Sousa J.M.
dc.creatorGalvao D.S.
dc.date2013
dc.date2015-06-25T19:16:11Z
dc.date2015-11-26T15:14:11Z
dc.date2015-06-25T19:16:11Z
dc.date2015-11-26T15:14:11Z
dc.date.accessioned2018-03-28T22:24:16Z
dc.date.available2018-03-28T22:24:16Z
dc.identifier9781605115269
dc.identifierMaterials Research Society Symposium Proceedings. Materials Research Society, v. 1549, n. , p. 59 - 64, 2013.
dc.identifier2729172
dc.identifier10.1557/opl.2013.608
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84898474392&partnerID=40&md5=af6d08375223f6082a051ff511879acb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/89426
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/89426
dc.identifier2-s2.0-84898474392
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1258811
dc.descriptionGraphene is a two-dimensional (2D) hexagonal array of carbon atoms in sp2-hybridized states. Graphene presents unique and exceptional electronic, thermal and mechanical properties. However, in its pristine state graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Because of this there is a renewed interest in other possible two-dimensional carbon-based structures similar to graphene. Examples of mis are graphynes and graphdiynes, which are two-dimensional structures, composed of carbon atoms in sp2 and sp-hybridized states. Graphdiynes (benzenoid rings connecting two acetylenic groups) were recently synthesized and they can be intrinsically nonzero gap systems. These systems can be easily hydrogenated and the amount of hydrogenation can be used to tune the band gap value. In this work we have investigated, through fully atomistic molecular dynamics simulations with reactive force field (ReaxFF), the structural and dynamics aspects of the hydrogenation mechanisms of graphdiyne membranes. Our results showed that depending on whether the atoms are in the benzenoid rings or as part of the acetylenic groups, the rates of hydrogenation are quite distinct and change in time in a very complex pattern. Initially, the most probable sites to be hydrogenated are the carbon atoms forming the triple bonds, as expected. But as the amount of hydrogenation increases in time this changes and then the carbon atoms forming single bonds become the preferential sites. The formation of correlated domains observed in hydrogenated graphene is no longer observed in the case of graphdiynes. We have also carried out ab initio DFT calculations for model structures in order to test the reliability of ReaxFF calculations. © 2013 Materials Research Society.
dc.description1549
dc.description
dc.description59
dc.description64
dc.descriptionNovoselov, K.S., (2004) Science, 306, p. 666
dc.descriptionCheng, S.H., (2010) Phys. Rev. B, 81, p. 205435
dc.descriptionMalko, D., Neiss, C., Vines, F., Gorling, A., (2012) Phys. Rev. Lett., 108, p. 086804
dc.descriptionBaughman, R., Eckhardt, H., Kertesz, M., (1987) J. Chem. Phys., 87, p. 6687
dc.descriptionPeng, Q., Ji, W., De, S., (2012) Phys. Chem. Chem. Phys., 14, p. 13385
dc.descriptionColuci, V.R., Braga, S.F., Legoas, S.B., Galvao, D.S., Baughman, R.H., (2003) Phys. Rev. B, 68, p. 035430
dc.descriptionColuci, V.R., Braga, S.F., Legoas, S.B., Galvao, D.S., Baughman, R.H., (2004) Nanotechnology, 15, p. 8142
dc.descriptionLi, G., (2010) Chem. Commun., 46, p. 3256
dc.descriptionLuo, G., (2011) Phys. Rev. B, 84, p. 075439
dc.descriptionPsofogiannakis, G.M., Froudakis, G.E., (2012) J. Phys. Chem. C, 116, p. 19211
dc.descriptionFlores, M.Z.S., Autreto, P.A.S., Legoas, S.B., Galvao, D.S., (2009) Nanotechnology, 20, p. 465704
dc.descriptionCranford, S.W., Buelher, M.J., (2012) Nanoscale, 4, p. 4587
dc.descriptionVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard III, W.A., (2001) J. Phys. Chem. A, 105, p. 9396
dc.descriptionVan Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515
dc.descriptionChenoweth, K., Van Duin, A.C.T., Goddard III, W.A., (2008) J. Phys. Chem. A, 112, p. 1040
dc.descriptionPlimpton, S., (1995) J. Comp. Phys., 117, p. 1. , http://lammps.sandia.gov/
dc.descriptionDelly, B., (1990) J. Chem. Phys., 92, p. 508
dc.descriptionPerdew, J., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
dc.descriptionPaupitz, R., (2013) Nanotechnology, 24, p. 035706
dc.languageen
dc.publisherMaterials Research Society
dc.relationMaterials Research Society Symposium Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleOn The Dynamics Of Graphdiyne Hydrogenation
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución