dc.creatorMeiorin C.
dc.creatorMuraca D.
dc.creatorPirota K.R.
dc.creatorAranguren M.I.
dc.creatorMosiewicki M.A.
dc.date2014
dc.date2015-06-25T18:03:36Z
dc.date2015-11-26T15:05:58Z
dc.date2015-06-25T18:03:36Z
dc.date2015-11-26T15:05:58Z
dc.date.accessioned2018-03-28T22:16:29Z
dc.date.available2018-03-28T22:16:29Z
dc.identifier
dc.identifierEuropean Polymer Journal. , v. 53, n. 1, p. 90 - 99, 2014.
dc.identifier143057
dc.identifier10.1016/j.eurpolymj.2014.01.018
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893871775&partnerID=40&md5=9e8684a0c0ce20c2a0b96d9d97891905
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88051
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88051
dc.identifier2-s2.0-84893871775
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257144
dc.descriptionThe direct reaction of unmodified tung oil and styrene initiated by boron trifluoride diethyl etherate allowed obtaining thermoset polymers with valuable properties like shape memory behavior. On the other hand, the addition of magnetite nanoparticles (MNPs) to the tung oil/styrene copolymer was considered, in order to improve/modify its properties. MNPs were synthesized by the method of alkaline coprecipitation, followed by coating with oleic acid in order to hydrophobize their surfaces and make them more compatible with the polymeric matrix. Thus, superparamagnetic polymer nanocomposites were prepared from the inclusion of the MNPs to the cationically copolymerized tung oil (TO) and styrene (St) networks. The morphology, dynamic-mechanical and mechanical properties of the copolymers as well as magnetic behavior were significantly affected by the variation of the concentration of the MNPs. © 2014 Elsevier Ltd. All rights reserved.
dc.description53
dc.description1
dc.description90
dc.description99
dc.descriptionYu, L., Dean, K., Li, L., Polymer blends and composites from renewable resources (2006) Progress in Polymer Science (Oxford), 31 (6), pp. 576-602. , DOI 10.1016/j.progpolymsci.2006.03.002, PII S0079670006000414
dc.descriptionKaplan, D.L., (1998) Biopolymers from Renewable Resources, , Springer New York
dc.descriptionMohanty, A.K., Misra, M., Drzal, L.T., (2005) Natural Fibers, Biopolymers, and Biocomposites, , Taylor & Francis Boca Raton, Florida
dc.descriptionMecking, S., Nature or petrochemistry?-biologically degradable materials (2004) Angew Chem Int Ed Engl, 43 (9), pp. 1078-1085
dc.descriptionLi, F., Larock, R.C., Thermosetting polymers from cationic copolymerization of tung oil: Synthesis and characterization (2000) J Appl Polym Sci, 78 (5), pp. 1044-1056
dc.descriptionKhot, S.N., Lascala, J.J., Can, E., Morye, S.S., Williams, G.I., Palmese, G.R., Kusefoglu, S.H., Wool, R.P., Development and application of triglyceride-based polymers and composites (2001) Journal of Applied Polymer Science, 82 (3), pp. 703-723. , DOI 10.1002/app.1897
dc.descriptionLi, F., Larock, R.C., New soybean oil-styrene-divinylbenzene thermosetting copolymers. I. Synthesis and characterization (2001) Journal of Applied Polymer Science, 80 (4), pp. 658-670. , DOI 10.1002/1097-4628(20010425)80:4<658::AID-APP1142>3.0.CO;2-D
dc.descriptionLu, Y., Larock, R.C., Novel polymeric materials from vegetable oils and vinyl monomers: Preparation, properties, and applications (2009) ChemSusChem, 2 (2), pp. 136-147
dc.descriptionLu, Y., Larock, R.C., Bio-based nanocomposites from corn oil and functionalized organoclay prepared by cationic polymerization (2007) Macromolecular Materials and Engineering, 292 (7), pp. 863-872. , DOI 10.1002/mame.200700064
dc.descriptionPetrovic, Z.S., Zhang, W., Javni, I., Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis (2005) Biomacromolecules, 6 (2), pp. 713-719. , DOI 10.1021/bm049451s
dc.descriptionWood, E.C., (1949) Tung Oil: A New American Industry
dc.descriptionLiu, C., Yang, X., Cui, J., Zhou, Y., Hu, L., Zhang, M., Tung oil based monomer for thermosetting polymers: Synthesis, characterization and copolymerization with styrene (2012) BioResources, 7 (1), pp. 447-463
dc.descriptionMosiewicki, M.A., Casado, U., Marcovich, N.E., Aranguren, M.I., Polyurethanes from tung oil: Polymer characterization and composites (2009) Polym Eng Sci, 49 (4), pp. 685-692
dc.descriptionKinabrew, R.G., (1952) Tung Oil in Mississippi, the Competitive Position of the Industry, , University of Mississippi MS
dc.descriptionLi, F., Larock, R.C., Synthesis, structure and properties of new tung oil - Styrene - Divinylbenzene copolymers prepared by thermal polymerization (2003) Biomacromolecules, 4 (4), pp. 1018-1025. , DOI 10.1021/bm034049j
dc.descriptionGandini, A., (2010) Monomers and Macromonomers from Renewable Resources, pp. 1-33. , Biocatalysis in Polymer Chemistry: Wiley-VCH
dc.descriptionBiju, R., Gouri, C., Reghunadhan Nair, C.P., Shape memory polymers based on cyanate ester-epoxy-poly (tetramethyleneoxide) co-reacted system (2012) Eur Polym J, 48 (3), pp. 499-511
dc.descriptionLendlein, A., (2010) Shape-memory Polymers, , Springer New York
dc.descriptionHu, J., Zhu, Y., Huang, H., Lu, J., Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications (2012) Prog Polym Sci, 37, pp. 1720-1763
dc.descriptionMather, P.T., Luo, X., Rousseau, I.A., Shape memory polymer research (2009) Annu Rev Mater Res, pp. 445-471
dc.descriptionLi, F., Larock, R.C., New soybean oil-styrene-divinylbenzene thermosetting copolymers. V. Shape memory effect (2002) Journal of Applied Polymer Science, 84 (8), pp. 1533-1543. , DOI 10.1002/app.10493
dc.descriptionWei, Z.G., Sandstrom, R., Miyazaki, S., Shape-memory materials and hybrid composites for smart systems - Part I Shape-memory materials (1998) Journal of Materials Science, 33 (15), pp. 3743-3762
dc.descriptionMeiorin, C., Aranguren, M.I., Mosiewicki, M.A., Vegetable oil/styrene thermoset copolymers with shape memory behavior and damping capacity (2012) Polym Int, 61 (5), pp. 735-742
dc.descriptionParulekar, Y., Mohanty, A.K., Biodegradable toughened polymers from renewable resources: Blends of polyhydroxybutyrate with epoxidized natural rubber and maleated polybutadiene (2006) Green Chemistry, 8 (2), pp. 206-213. , DOI 10.1039/b508213g
dc.descriptionThulasiraman, V., Rakesh, S., Sarojadevi, M., Synthesis and characterization of chlorinated soy oil based epoxy resin/glass fiber composites (2009) Polym Compos, 30 (1), pp. 49-58
dc.descriptionIannone, A., Magin, R.L., Walczak, T., Federico, M., Swartz, H.M., Tomasi, A., Blood clearance of dextran magnetite particles determined by a noninvasive in vivo ESR method (1991) Magnet Reson Med, 22 (2), pp. 435-442
dc.descriptionMassart, R., Cabuil, V., Synthèse en milieu alcalin de magnétite colloïdale: Contrôle du rendement et de la taille des particules = synthesis of colloidal magnetite in alkaline medium: Yield and particle size control (1987) J Chim Phys, 84 (78), pp. 967-973
dc.descriptionYang, J., Park, S.-B., Yoon, H.-G., Huh, Y.-M., Haam, S., Preparation of poly ε-caprolactone nanoparticles containing magnetite for magnetic drug carrier (2006) International Journal of Pharmaceutics, 324 (2), pp. 185-190. , DOI 10.1016/j.ijpharm.2006.06.029, PII S0378517306004534
dc.descriptionPuig, J., Hoppe, C.E., Fasce, L.A., Pérez, C.J., Piñeiro-Redondo, Y., Bañobre-López, M., Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: Magnetic hyperthermia and shape memory (2012) J Phys Chem C, 116 (24), pp. 13421-13428
dc.descriptionYeganeh, H., Hojati-Talemi, P., Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol) (2007) Polymer Degradation and Stability, 92 (3), pp. 480-489. , DOI 10.1016/j.polymdegradstab.2006.10.011, PII S0141391006003028
dc.descriptionLi, F., Marks, D.W., Larock, R.C., Otaigbe, J.U., Fish oil thermosetting polymers: Synthesis, structure, properties and their relationships (2000) Polymer, 41 (22), pp. 7925-7939. , PII S0032386100000306
dc.descriptionMosivand, S., Monzon, L., Kazeminezhad, I., Coey, J., Influence of growth conditions on magnetite nanoparticles electro-crystallized in the presence of organic molecules (2013) Int J Mol Sci, 14 (5), pp. 10383-10396
dc.descriptionLing, Z., Rong, H., Hong-Chen, G., Oleic acid coating on the monodisperse magnetite nanoparticles (2006) Appl Surf Sci, 253, pp. 2611-2617
dc.descriptionSchmid, G., (2005) Nanoparticles: From Theory to Application, , second ed. Weinheim: Wiley Verlag
dc.descriptionScherrer, P., Göttinger nachrichten gesell (1918) J Math Phys, 2 (26), p. 98
dc.descriptionKlug, H.P., Alexander, L.E., (1974) X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, , second ed. John Wiley & Sons Inc. New York
dc.descriptionPatterson, A.L., The Scherrer formula for X-ray particle size determination (1939) Phys Rev, 56 (10), pp. 978-982
dc.descriptionGonzález, M., Martín-Fabiani, I., Baselga, J., Pozuelo, J., Magnetic nanocomposites based on hydrogenated epoxy resin (2012) Mater Chem Phys, 132 (23), pp. 618-624
dc.descriptionWang, C.Y., Hong, J.M., Chen, G., Zhang, Y., Gu, N., Facile method to synthesize oleic acid-capped magnetite nanoparticles (2010) Chin Chem Lett, 21 (2), pp. 179-182
dc.descriptionMaity, D., Choo, S.G., Yi, J., Ding, J., Xue, J.M., Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route (2009) J Magn Magn Mater, 321 (9), pp. 1256-1259
dc.descriptionZhang, L., He, R., Gu, H.-C., Oleic acid coating on the monodisperse magnetite nanoparticles (2006) Applied Surface Science, 253 (5), pp. 2611-2617. , DOI 10.1016/j.apsusc.2006.05.023, PII S0169433206007197
dc.descriptionMachunsky, S., Grimm, P., Schmid, H.J., Peuker, U.A., Liquid-liquid phase transfer of magnetite nanoparticles (2009) Colloids Surf, A, 348 (13), pp. 186-190
dc.descriptionRao, M.D., Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes (2003) J Sound Vibration, 262 (3), pp. 457-474
dc.descriptionRajan, G.S., Stromeyer, S.L., Mauritz, K.A., Miao, G., Mani, P., Shamsuzzoha, M., Nikles, D.E., Gupta, A., Superparamagnetic nanocomposites based on poly(styrene-b-ethylene/ butylene- b-styrene)/cobalt ferrite compositions (2006) Journal of Magnetism and Magnetic Materials, 299 (1), pp. 211-218. , DOI 10.1016/j.jmmm.2005.04.004, PII S0304885305004737
dc.descriptionEnnas, G., Casula, M.F., Falqui, A., Gatteschi, D., Marongiu, G., Marras, S., Non-stoichiometric CoFe2O4 nanoparticles supported on an amorphous silica matrix (2003) J Sol-Gel Sci Technol, 26 (13), pp. 463-466
dc.descriptionCantwell, W.J., Roulin-Moloney, A.C., (1989) Fractography and Failure Mechanisms of Polymers and Composites, pp. 256-258. , A.C. Roulin-Moloney, Elsevier Applied Science London, UK [cap. 7]
dc.descriptionCantwell, W.J., Roulin-Moloney, A.C., Kaiser, T., Fractography of unfilled and particulate-Filled epoxy resins (1988) Journal of Materials Science, 23 (5), pp. 1615-1631
dc.descriptionBandyopadhyay, S., Review of the microscopic and macroscopic aspects of fracture of unmodified epoxy resins (1990) Mater Sci Eng, A, 125 (2), pp. 157-184
dc.descriptionKausch, H.H., (1987) Polymer Fracture, p. 382. , 2nd ed. Springer Verlag Germany [chap. 9]
dc.descriptionMarcovich, N.E., Auad, M.L., Bellesi, N.E., Nutt, S.R., Aranguren, M.I., Cellulose micro/nanocrystals reinforced polyurethane (2006) Journal of Materials Research, 21 (4), pp. 870-881. , DOI 10.1557/jmr.2006.0105
dc.languageen
dc.publisher
dc.relationEuropean Polymer Journal
dc.rightsfechado
dc.sourceScopus
dc.titleNanocomposites With Superparamagnetic Behavior Based On A Vegetable Oil And Magnetite Nanoparticles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución