dc.creatorRojas-Trigos J.B.
dc.creatorMarin E.
dc.creatorMansanares A.M.
dc.creatorCedeno E.
dc.creatorJuarez-Gracia G.
dc.creatorCalderon A.
dc.date2014
dc.date2015-06-25T18:01:06Z
dc.date2015-11-26T15:02:51Z
dc.date2015-06-25T18:01:06Z
dc.date2015-11-26T15:02:51Z
dc.date.accessioned2018-03-28T22:13:44Z
dc.date.available2018-03-28T22:13:44Z
dc.identifier
dc.identifierThermochimica Acta. Elsevier, v. 582, n. , p. 101 - 105, 2014.
dc.identifier406031
dc.identifier10.1016/j.tca.2014.03.006
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84897446976&partnerID=40&md5=0e6c8893ac28698f32ae083debdcaeec
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87496
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87496
dc.identifier2-s2.0-84897446976
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256474
dc.descriptionThis work presents an extended description about the theoretical aspects related to the generation of the photopyroelectric signal in a recently proposed wedge-like heat transmission detection configuration, which recreates the well-known Angstrom method (widely used for solid samples) for accurate thermal diffusivity measurement in gases and liquids. The presented model allows for the calculation of the temperature profile detected by the pyroelectric sensor as a function of the excitation beam position, and the study of the influence on it of several parameters, such as spot size, thermal properties of the absorber layer, and geometrical parameters of the measurement cell. Through computer simulations, it has been demonstrated that a narrow temperature distribution is created at the sensor surface, independently of the lateral diffusion of heat taking place at the sample's surface. © 2014 Elsevier B.V.
dc.description582
dc.description
dc.description101
dc.description105
dc.descriptionAlmond, D.P., Patel, P.M., (1996) Photothermal Science and Techniques in Physics and Its Applications, 10 VOL.. , Chapman and Hall London
dc.descriptionMarín, E., Vargas, H., Recent developments in thermal wave interferometry (2009) Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, pp. 99-123. , Transworld Research Kerala, India
dc.descriptionChirtoc, M., Mihilescu, G., Theory of the photopyroelectric method for investigation of optical and thermal materials properties (1989) Phys. Rev. B, 40, pp. 9606-9617
dc.descriptionChirtoc, M., Chirtoc, I., Bicanic, D., Pelzl, J., Photopyroelectric (PPE) spectroscopy: Absorption, transmission or reflection? (1995) Ferroelectrics, 165, pp. 27-38
dc.descriptionMandelis, A., Matvienko, A., Photopyroelectric thermal-wave cavity devices-10 years later (2007) Pyroelectric Materials and Sensors, Research Signpost, pp. 61-97. , Kerala, India
dc.descriptionAngstrom, A.J., A new method to determine the heat conduction capacity of physical objets (1861) Ann. Phys. Lpz., 114, pp. 513-530
dc.descriptionMarin, E., Jean-Baptiste, L.E., Hernandez, M., Teaching thermal wave physics with soils (2006) Revista Mexicana de Fisica, 52 (1 SUPPL.), pp. 21-27
dc.descriptionRojas-Trigos, J.B., Bermejo Arenas, A., Marín, E., On heat transfer through a solid slab heated uniformly and periodically: Determination of thermal properties (2012) Eur. J. Phys., 33, pp. 135-148
dc.descriptionKuo, P.K., Favro, L.D., A simplified approach to computations of photoacoustic signals in gas-filled cells (1982) Appl. Phys. Lett., 40 (12), pp. 1012-1014
dc.descriptionFabbri, L., Cernuschi, F., Finite laser beam size effects in thermal wave interferometry (1997) Journal of Applied Physics, 82 (11), pp. 5305-5311
dc.descriptionSalazar, A., Mendioroz, A., Propagation of thermal waves across a wedge (2012) J. Appl. Phys., 112, p. 063511
dc.descriptionMarín, E., Hernández-Rosales, E., Mansanares, A.M., Ivanov, R., Rojas-Trigos, J.B., A method for thermal diffusivity measurement in fluids (2013) Rev. Sci. Instrum., 84, p. 104903
dc.descriptionMandelis, A., (2001) Diffusion-Wave Fields. Mathematical Methods and Green Functions, , Springer Verlag New York
dc.descriptionTouloukian, Y.S., Powell, R.W., Ho, C.Y., Nicolau, M.C., (1973) Thermal Diffusivity, , IFI New York
dc.descriptionKallaev, S.N., Gadzhiev, G.G., Kamilov, I.K., Omarov, Z.M., Sadykov, S.A., Reznichenko, L.A., Thermal properties of PZT-based ferroelectric ceramics (2006) Physics of the Solid State, 48 (6), pp. 1169-1170. , DOI 10.1134/S1063783406060473
dc.descriptionHooker, M.W., (1998) Properties of the PZT-Based Piezoelectric Ceramics between -150 and 250 °c, (NASA CR-1998-208708), , Lockheed Martin Engineering & Sciences Co. Hampton, VA
dc.languageen
dc.publisherElsevier
dc.relationThermochimica Acta
dc.rightsfechado
dc.sourceScopus
dc.titleTheoretical Description Of The Photopyroelectric Technique In The Slanted Detector Configuration For Thermal Diffusivity Measurements In Fluids
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución