dc.creatorDe Alencar Figueira J.
dc.creatorDias F.F.G.
dc.creatorSato H.H.
dc.creatorFernandes P.
dc.date2011
dc.date2015-06-30T20:24:01Z
dc.date2015-11-26T14:48:54Z
dc.date2015-06-30T20:24:01Z
dc.date2015-11-26T14:48:54Z
dc.date.accessioned2018-03-28T21:59:46Z
dc.date.available2018-03-28T21:59:46Z
dc.identifier
dc.identifierEnzyme Research. , v. 2011, n. 1, p. - , 2011.
dc.identifier20900406
dc.identifier10.4061/2011/642460
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84869034577&partnerID=40&md5=e3f1c13e070e952eede08581ff84baec
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107794
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107794
dc.identifier2-s2.0-84869034577
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253740
dc.descriptionA set of supports were screened for the immobilization of a partially purified extract of β-glucosidase from Aspergillus sp. These supports, namely, Eupergit, Amberlite, alginate, gelatin, polyvinyl alcohol- (PVA-) based matrices (Lentikats), and sol-gel, have proved effective for the implementation of some other enzyme-based processes. The initial criterion for selection of promising supports prior to further characterization relied on the retention of the catalytic activity following immobilization. Based on such criterion, where immobilization in sol-gel and in Lentikats outmatched the remaining approaches, those two systems were further characterized. Immobilization did not alter the pH/activity profile, whereas the temperature/activity profile was improved when sol-gel support was assayed. Both thermal and pH stability were improved as a result of immobilization. An increase in the apparent KM (Michaelis constant) was observed following immobilization, suggesting diffusion limitations. © 2011 Joelise de Alencar Figueira et al.
dc.description2011
dc.description1
dc.description
dc.description
dc.descriptionYeoman, C.J., Han, Y., Dodd, D., Schroeder, C.M., Mackie, R.I., Cann, I.K., Thermostable enzymes as biocatalysts in the biofuel industry (2010) Advances in Applied Microbiology, 70, pp. 1-55. , 2-s2.0-77951630910 10.1016/S0065-2164(10)70001-0
dc.descriptionHill, C., Lavigne, J., Whissel, M., Tomashek, J.J., Modified β -glucosidases with Improved Stability, , Patent US 20100093040, 2010
dc.descriptionBhatia, Y., Mishra, S., Bisaria, V.S., Microbial β-glucosidases: Cloning, properties, and applications (2002) Critical Reviews in Biotechnology, 22 (4), pp. 375-407. , DOI 10.1080/07388550290789568
dc.descriptionLongo, M.A., Sanroman, M.A., Production of food aroma compounds: Microbial and enzymatic methodologies (2006) Food Technology and Biotechnology, 44 (3), pp. 335-353. , http://public.carnet.hr/ftbrfd/44-335.pdf
dc.descriptionGueguen, Y., Chemardin, P., Janbon, G., Arnaud, A., Galzy, P., Buck, C., Use of β -glucosidase in the development of flavor in wines and fruit juices (1999) Carbohydrate Biotechnology Protocols, Methods in Biotechnology, pp. 323-331. , Totowa, NJ, USA Humana Press
dc.descriptionSheldon, R.A., Enzyme immobilization: The quest for optimum performance (2007) Advanced Synthesis and Catalysis, 349 (8-9), pp. 1289-1307. , 2-s2.0-34547209337 10.1002/adsc.200700082
dc.descriptionFernandes, P., Enzymes in food processing: A condensed overview on strategies for better biocatalysts (2010) Enzyme Research, 2010, pp. 1-19
dc.descriptionTufvesson, P., Lima-Ramos, J., Nordblad, M., Woodley, J.M., Guidelines and cost analysis for catalyst production in biocatalytic processes (2011) Organic Process Research and Development, 15 (1), pp. 266-274. , 10.1021/op1002165
dc.descriptionKatchalski-Katzir, E., Kraemer, D.M., Eupergit, C., A carrier for immobilization of enzymes of industrial potential (2000) Journal of Molecular Catalysis - B Enzymatic, 10 (1-3), pp. 157-176. , DOI 10.1016/S1381-1177(00)00124-7, PII S1381117700001247
dc.descriptionCao, L., (2005) Carrier-Bound Immobilized Enzymes - Principles, Applications and Design, , Weinheim, Germany Wiley-VCH
dc.descriptionHeichal-Segal, O., Rappoport, S., Braun, S., Immobilization in alginate-silicate sol-gel matrix protects β -glucosidase against thermal and chemical denaturation (1995) Nature Biotechnology, 13 (8), pp. 798-800. , 2-s2.0-0029089382 10.1038/nbt0895-798
dc.descriptionO'Neill, H., Angley, C.V., Hemery, I., Evans, B.R., Dai, S., Woodward, J., Properties of carbohydrate-metabolizing enzymes immobilized in sol-gel beads: Stabilization of invertase and β-glucosidase by Blue Dextran (2002) Biotechnology Letters, 24 (10), pp. 783-790. , DOI 10.1023/A:1015572020633
dc.descriptionVila-Real, H., Alfaia, A.J., Rosa, J.N., Gois, P.M.P., Rosa, M.E., Calado, A.R.T., Ribeiro, M.H., α-rhamnosidase and β -glucosidase expressed by naringinase immobilized on new ionic liquid sol-gel matrices: Activity and stability studies (2011) Journal of Biotechnology, 152 (4), pp. 147-158. , 2-s2.0-77956493595 10.1016/j.jbiotec.2010.08.005
dc.descriptionDing, W.A., Vorlop, K.-D., Gel Aus Polyvinylalkohol und Verfahren zu Seiner Herstellung, , German Patent DE4327923, 1995
dc.descriptionGröger, H., Capan, E., Barthuber, A., Vorlop, K.D., Asymmetric synthesis of an (R)-cyanohydrin using enzymes entrapped in lens-shaped gels (2001) Organic Letters, 3 (13), pp. 1969-1972. , 2-s2.0-0035963697
dc.descriptionWilson, L., Illanes, A., Pessela, B.C.C., Abian, O., Fernandez-Lafuente, R., Guisan, J.M., Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media (2004) Biotechnology and Bioengineering, 86 (5), pp. 558-562. , DOI 10.1002/bit.20107
dc.descriptionGomez De Segura, A., Alcalde, M., Plou, F.J., Remaud-Simeon, M., Monsan, P., Ballesteros, A., Encapsulation in LentiKats of dextransucrase from Leuconostoc mesenteroides NRRL B-1299, and its effect on product selectivity (2003) Biocatalysis and Biotransformation, 21 (6), pp. 325-331. , DOI 10.1080/10242420310001630191
dc.descriptionRebros, M., Rosenberg, M., Mlichova, Z., Kristofikova, L., Paluch, M., A simple entrapment of glucoamylase into LentiKats as an efficient catalyst for maltodextrin hydrolysis (2006) Enzyme and Microbial Technology, 39 (4), pp. 800-804. , DOI 10.1016/j.enzmictec.2006.01.001, PII S0141022906000020
dc.descriptionRebros, M., Rosenberg, M., Mlichova, Z., Kristofikova, L., Hydrolysis of sucrose by invertase entrapped in polyvinyl alcohol hydrogel capsules (2007) Food Chemistry, 102 (3), pp. 784-787. , DOI 10.1016/j.foodchem.2006.06.020, PII S0308814606004845
dc.descriptionGrosová, Z., Rosenberg, M., Rebroš, M., Šipozc, M., Sedláková, B., Entrapment of β-galactosidase in polyvinylalcohol hydrogel (2008) Biotechnology Letters, 30 (4), pp. 763-767. , 2-s2.0-43149116089 10.1007/s10529-007-9606-0
dc.descriptionGill, I., Ballesteros, A., Bioencapsulation within synthetic polymers (Part 1): Sol-gel encapsulated biologicals (2000) Trends in Biotechnology, 18 (7), pp. 282-296. , DOI 10.1016/S0167-7799(00)01457-8, PII S0167779900014578
dc.descriptionAvnir, D., Lev, O., Livage, J., Recent bio-applications of sol-gel materials (2006) Journal of Materials Chemistry, 16 (11), pp. 1013-1030. , DOI 10.1039/b512706h
dc.descriptionKandimalla, V., Tripathi, V.S., Ju, H., Immobilization of biomolecules in sol-gels: Biological and analytical applications (2006) Critical Reviews in Analytical Chemistry, 36 (2), pp. 73-106. , DOI 10.1080/10408340600713652, PII Q015034051523825
dc.descriptionTomin, A., Weiser, D., Hellner, G., Fine-tuning the second generation sol-gel lipase immobilization with ternary alkoxysilane precursor systems (2011) Process Biochemistry, 46 (1), pp. 52-58. , 2-s2.0-78650250734 10.1016/j.procbio.2010.07.021
dc.descriptionYilmaz, E., Sezgin, M., Yilmaz, M., Immobilization of Candida rugosa lipase on magnetic sol-gel composite supports for enzymatic resolution of (R,S)-naproxen methyl ester (2011) Journal of Molecular Catalysis B, 69 (1-2), pp. 35-41. , 10.1016/j.molcatb.2010.12.007
dc.descriptionBernardino, S.M.S.A., Fernandes, P., Fonseca, L.P., Improved specific productivity in cephalexin synthesis by immobilized PGA in silica magnetic micro-particles (2010) Biotechnology and Bioengineering, 107 (5), pp. 753-762. , 2-s2.0-77958574445 10.1002/bit.22867
dc.descriptionXu, Q., Mao, C., Liu, N.-N., Zhu, J.-J., Shen, J., Immobilization of horseradish peroxidase on O-carboxymethylated chitosan/sol-gel matrix (2006) Reactive and Functional Polymers, 66 (8), pp. 863-870. , DOI 10.1016/j.reactfunctpolym.2005.11.015, PII S138151480500297X
dc.descriptionBernardino, S.M.S.A., Fernandes, P., Fonseca, L.P., A new biocatalyst: Penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties (2009) Biotechnology Journal, 4 (5), pp. 695-702. , 2-s2.0-68049090752 10.1002/biot.200800287
dc.descriptionKawaguti, H.Y., Manrich, E., Sato, H.H., Production of isomaltulose using Erwinia sp. D12 cells: Culture medium optimization and cell immobilization in alginate (2006) Biochemical Engineering Journal, 29 (3), pp. 270-277. , 2-s2.0-33646187608 10.1016/j.bej.2006.01.006
dc.descriptionKawaguti, H.Y., Buzzato, M.F., Orsi, D.C., Suzuki, G.T., Sato, H.H., Effect of the additives polyethylenimine and glutaraldehyde on the immobilization of Erwinia sp. D12 cells in calcium alginate for isomaltulose production (2006) Process Biochemistry, 41 (9), pp. 2035-2040. , DOI 10.1016/j.procbio.2006.05.003, PII S1359511306001772
dc.descriptionObon, J.M., Castellar, M.R., Iborra, J.L., Manjon, A., β-Galactosidase immobilization for milk lactose hydrolysis: A simple experimental and modelling study of batch and continuous reactors (2000) Biochemical Education, 28 (3), pp. 164-168. , DOI 10.1016/S0307-4412(99)00097-7, PII S0307441299000977
dc.descriptionDe Assis, S.A., Ferreira, B.S., Fernandes, P., Guaglianoni, D.G., Cabral, J.M.S., Oliveira, O.M.M.F., Gelatin-immobilized pectinmethylesterase for production of low methoxyl pectin (2004) Food Chemistry, 86 (3), pp. 333-337. , DOI 10.1016/j.foodchem.2003.09.040, PII S030881460300459X
dc.descriptionMatsuura, M., Sasaki, J., Murao, S., Studies on β -glucosidases from soybeans that hydrolyze daidzin and genistin: Isolation and characterization of an isozyme (1995) Bioscience Biotechnology and Biochemistry, 59 (9), pp. 1623-1627
dc.descriptionDoig, S.D., Pickering, S.C.R., Lye, G.J., Woodley, J.M., The use of microscale processing technologies for quantification of biocatalytic Baeyer-Villiger oxidation kinetics (2002) Biotechnology and Bioengineering, 80 (1), pp. 42-49. , 2-s2.0-0037026964 10.1002/bit.10344
dc.descriptionRiaz, A., Ul Qader, S.A., Anwar, A., Iqbal, S., Immobilization of a thermostable α -amylase on calcium alginate beads from Bacillus subtilis KIBGE-HAR (2009) Australian Journal of Basic and Applied Sciences, 3 (3), pp. 2883-2887. , 2-s2.0-77952259205
dc.descriptionBernardino, S., Estrela, N., Ochoa-Mendes, V., Fernandes, P., Fonseca, L.P., Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties (2011) Journal of Sol-Gel Science and Technology, 58 (2), pp. 545-556. , 10.1007/s10971-011-2426-7
dc.descriptionAnnabi, N., Nichol, J.W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., Dehghani, F., Controlling the porosity and microarchitecture of hydrogels for tissue engineering (2010) Tissue Engineering B, 16 (4), pp. 371-383. , 2-s2.0-77955070371 10.1089/ten.teb.2009.0639
dc.descriptionPierre, A.C., The sol-gel encapsulation of enzymes (2004) Biocatalysis and Biotransformation, 22 (3), pp. 145-170. , DOI 10.1080/10242420412331283314
dc.descriptionCoradin, T., Boissière, M., Livage, J., Sol-gel chemistry in medicinal science (2006) Current Medicinal Chemistry, 13 (1), pp. 99-108. , 2-s2.0-33644865622 10.2174/092986706775197999
dc.descriptionChang, M.-Y., Juang, R.-S., Use of chitosan-clay composite as immobilization support for improved activity and stability of β-glucosidase (2007) Biochemical Engineering Journal, 35 (1), pp. 93-98. , DOI 10.1016/j.bej.2007.01.003, PII S1369703X07000071
dc.descriptionJiang, D.-S., Long, S.-Y., Huang, J., Xiao, H.-Y., Zhou, J.-Y., Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres (2005) Biochemical Engineering Journal, 25 (1), pp. 15-23. , DOI 10.1016/j.bej.2005.03.007, PII S1369703X0500077X
dc.descriptionUs Inc, D., Accellerase BG - Accessory Beta-glucosidase for Biomass Hydrolysis, , http://www.genencor.com/fileadmin/userupload/genencor/documents/ ACCELLERASERBG0020209.pdf, 2009, (assessed on the 25th August 2011)
dc.descriptionYazdi, M.T., Khosravi, A.A., Nemati, M., Motlagh, N.D.V., Purification and characterization of two intracellular β-glucosidases from the Neurospora crassa mutant cell-1 (2003) World Journal of Microbiology and Biotechnology, 19 (1), pp. 79-84. , DOI 10.1023/A:1022531706036
dc.descriptionTu, M., Zhang, X., Kurabi, A., Gilkes, N., Mabee, W., Saddler, J., Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis (2006) Biotechnology Letters, 28 (3), pp. 151-156. , DOI 10.1007/s10529-005-5328-3
dc.descriptionKaragulyan, H.K., Gasparyan, V.K., Decker, S.R., Immobilization of fungal β -glucosidase on silica gel and kaolin carriers (2008) Applied Biochemistry and Biotechnology, 146 (1-3), pp. 39-47. , 2-s2.0-49349106220 10.1007/s12010-007-8065-3
dc.descriptionMartino, A., Durante, M., Pifferi, P.G., Spagna, G., Bianchi, G., Immobilization of β-glucosidase from a commercial preparation. Part 1. A comparative study of natural supports (1996) Process Biochemistry, 31 (3), pp. 281-285
dc.descriptionNagatomo, H., Matsushita, Y.-I., Sugamoto, K., Matsui, T., Preparation and properties of gelatin-immobilized β-glucosidase from Pyrococcus furiosus (2005) Bioscience, Biotechnology and Biochemistry, 69 (1), pp. 128-136. , DOI 10.1271/bbb.69.128
dc.descriptionSynowiecki, J., Wolosowska, S., Immobilization of thermostable β-glucosidase from Sulfolobus shibatae by cross-linking with transglutaminase (2006) Enzyme and Microbial Technology, 39 (7), pp. 1417-1422. , DOI 10.1016/j.enzmictec.2006.03.028, PII S0141022906001682
dc.descriptionAbdel-Naby, M.A., Immobilization of Aspergillus niger NRC 107 xylanase and β -xylosidase, and properties of the immobilized enzymes (1993) Applied Biochemistry and Biotechnology, 38 (1-2), pp. 69-81. , 2-s2.0-0027345141 10.1007/BF02916413
dc.descriptionGoradia, D., Cooney, J., Hodnett, B.K., Magner, E., The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates (2005) Journal of Molecular Catalysis B: Enzymatic, 32 (5-6), pp. 231-239. , DOI 10.1016/j.molcatb.2004.12.007, PII S1381117704002978
dc.languageen
dc.publisher
dc.relationEnzyme Research
dc.rightsaberto
dc.sourceScopus
dc.titleScreening Of Supports For The Immobilization Of β-glucosidase
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución