dc.creatorMendonca B.A.A.
dc.creatorde Sousa A.C.B.
dc.creatorde Souza A.P.
dc.creatorScarpassa V.M.
dc.date2014
dc.date2015-06-25T17:56:11Z
dc.date2015-11-26T14:42:56Z
dc.date2015-06-25T17:56:11Z
dc.date2015-11-26T14:42:56Z
dc.date.accessioned2018-03-28T21:50:49Z
dc.date.available2018-03-28T21:50:49Z
dc.identifier
dc.identifierActa Tropica. Elsevier, v. 134, n. 1, p. 80 - 88, 2014.
dc.identifier0001706X
dc.identifier10.1016/j.actatropica.2014.02.014
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896929024&partnerID=40&md5=52558757075deeb5d6cfea320161654e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86971
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86971
dc.identifier2-s2.0-84896929024
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251483
dc.descriptionIn recent years, high levels of Aedes aegypti infestation and several dengue outbreaks with fatal outcome cases have been reported in Manaus, State of Amazonas, Brazil. This situation made it important to understand the genetic structure and gene flow patterns among the populations of this vector in Manaus, vital pieces of information for their management and development of new control strategies. In this study, we used nine microsatellite loci to examine the effect of seasonality on the genetic structure and gene flow patterns in Ae. aegypti populations from four urban neighborhoods of Manaus, collected during the two main rainy and dry seasons. All loci were polymorphic in the eight samples from the two seasons, with a total of 41 alleles. The genetic structure analyses of the samples from the rainy season revealed genetic homogeneity and extensive gene flow, a result consistent with the abundance of breeding sites for this vector. However, the samples from the dry season were significantly structured, due to a reduction of Ne in two (Praça 14 de Janeiro and Cidade Nova) of the four samples analyzed, and this was the primary factor influencing structure during the dry season. Genetic bottleneck analyses suggested that the Ae. aegypti populations from Manaus are being maintained continuously throughout the year, with seasonal reduction rather than severe bottleneck or extinction, corroborating previous reports. These findings are of extremely great importance for designing new dengue control strategies in Manaus. © 2014 Elsevier B.V.
dc.description134
dc.description1
dc.description80
dc.description88
dc.descriptionApostol, B.L., Black, I.V., Reiter, W.C., Miller, P.B.R., Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico (1994) Am. J. Trop. Med. Hyg., 51, pp. 89-97
dc.descriptionBastos, M.S., Figueiredo, R.M.P., Ramasawmy, R., Itapirema, E., Gimaque, J.B.L., Santos, L.O., Figueiredo, L.T.M., Mourão, M.P.G., Simultaneous circulation of all four dengue serotypes in Manaus, State of Amazonas Brazil, in 2011 (2012) Rev. Soc. Brasil. Med. Trop., 45, pp. 393-394
dc.descriptionBrown, J.E., McBride, C.S., Johnson, P., Ritchie, S., Paupy, C., Bossin, H., Lutomiah, J., Powell, C.J.R., Worldwide patterns of genetic differentiation imply multiple "domestications" of Aedes aegypti, a major vector of human diseases (2010) Proc. R. Soc. B, p. 2469
dc.descriptionCampos, M., Spenassatto, C., Macoris, M.L.G., Paduan, K.S., Pinto, J., Ribolla, P.E.M., Seasonal population dynamics and the genetic structure of the mosquito vector Aedes aegypti in São Paulo, Brazil (2012) Ecol. Evol., 2, pp. 2794-2802
dc.descriptionChambers, E.W., Meece, J.K., McGowan, J.A., Lovin, D.D., Hemme, R.R., Chadee, D.D., McAbee, K., Severson, D.W., Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti (2007) J. Hered., 98, pp. 202-210
dc.descriptionCollins, F.H., Kamau, L., Ranson, H.A., Vulule, J.M., Molecular entomology and prospects for malaria control (2000) Bull. World Health Organ., 78, pp. 1412-1423
dc.descriptionCollins, F.H., Mendez, M.A., Rasmussen, M.O., Mehaffey, P.C., Besansky, N.J., Finnerty, V., A ribossomal RNA gene probe differentiations member species of the Anopheles gambiae complex (1987) Am. J. Trop. Med. Hyg., 37, pp. 37-41
dc.descriptionCornuet, J.M., Luikart, G., Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data (1996) Genetics, 144, pp. 2001-2014
dc.descriptionCosta-Ribeiro, M.C.V., Lourenço-de-Oliveira, R., Failloux, A.B., Geographic and temporal genetic patterns of Aedes aegypti populations in Rio de Janeiro, Brazil (2006) Trop. Med. Int. Health, 2, pp. 1276-1285
dc.descriptionCreste, S., Tulmann Neto, A., Figueira, A., Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining (2001) Plant Mol. Biol., 19, pp. 299-306
dc.descriptionEvanno, G., Regnaut, S., Goudet, J., Detecting the number of clusters of individuals using the software Structure: a simulation study (2005) Mol. Ecol., 14, pp. 2611-2620
dc.descriptionExcoffier, L., Laval, G., Schneider, S., (2006) An Integrated Software Package for Population Genetics Data Analysis, Version 3.01, , http://www.cmpg.unibe.ch/software/arlequin3, Computational and Molecular Population Genetics Lab. Institute of Zoology, University of Berne, Switzerland, Available from
dc.descriptionFailloux, A.-B., Vazeille, M., Rodhain, F., Geographic genetic variation in populations of the dengue virus vector Aedes aegypti (2002) J. Mol. Evol., 55, pp. 653-663
dc.descriptionForattini, O.P., (2002) Culicidologia Médica, Volume 2: Identificação, Biologia, Epidemiologia, p. 860. , Editora da Universidade de São Paulo, São Paulo, Brasil
dc.descriptionGoudet, J., FSTAT, version 2.9.3.2. A computer program to calculate F-statistics (1995) J. Hered., 86, pp. 485-486
dc.descriptionGubler, D.J., Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem (1997) Dengue and Dengue Hemorrhagic Fever, pp. 1-23. , CAB International, New York, D.J. Gubler, G. Kino (Eds.)
dc.descriptionGubler, D.J., Epidemic dengue/dengue hemorrhagic fever as a public health, social, and economic problem in the 21st century (2002) Trends Microbiol., 10, pp. 100-103
dc.descriptionGutiérrez, L.A., Gómes, G.G., González, J.J., Castro, M.I., Luckhart, S., Conn, J.E., Correa, M.M., Microgeographic genetic variation of the malaria vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia (2010) Am. J. Trop. Med. Hyg., 83, pp. 38-47
dc.descriptionHlaing, T., Tun-Lin, W., Somboon, P., Socheat, D., Setha, T., Min, S., Thaung, S., Walton, C., Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia (2010) Evol. Applicat., 3, pp. 319-339
dc.descriptionHolm, S., A simple sequential rejective multiple test procedure (1979) Scand. J. Stat., 6, pp. 65-70
dc.descriptionHuber, K., Loan, L.L., Hoang, T.H., Ravel, S., Rodhain, F., Failloux, A.-B., Genetic differentiation of the dengue vector, Aedes aegypti (Ho Chi Minh City Vietnam) using microsatellite markers (2002) Mol. Ecol., 11, pp. 1629-1635
dc.descriptionHuber, K., Loan, L.L., Hoang, T.H., Tien, T.K., Rodhain, F., Failloux, A.-B., Temporal genetic variation in Aedes aegypti populations in Ho Chi Minh City (Vietnam) (2002) Heredity, 89, pp. 7-14
dc.descriptionHuber, K., Ba, Y., Dia, I., Mathiot, C., Sall, A.A., Diallo, M., Aedes aegypti in Senegal: genetic diversity and genetic structure of domestic and sylvatic populations (2008) Am. J. Trop. Med. Hyg., 79, pp. 218-229
dc.description(2013) Instituto Brasileiro de Geografia e Estatística, , www.ibge.gov.br/home/estatistica/pesquisas/indicadores.php, IBGE Available at: (accessed 01.09.13)
dc.descriptionLima-Júnior, R.S., Scarpassa, V.M., Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon based on mitochondrial DNA ND4 gene sequences (2009) Genet. Mol. Biol., 32, pp. 414-422
dc.descriptionLourenço-de-Oliveira, R., Vazeille, M., Filippis, A.M.B., Failloux, A.-B., Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil (2002) Mem. Inst. Oswaldo Cruz, 97, pp. 437-439
dc.descriptionLourenço-de-Oliveira, R., Vazeille, M., Filippis, A.M.B., Failloux, A.-B., Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to dengue and yellow fever viruses (2004) Trans. Royal Soc. Trop. Med. Hyg., 98, pp. 43-54
dc.descriptionMcCauley, D.E., Genetics consequence of local population extinction and recolonization (1991) Trends Ecol. Evol., 6, pp. 5-8
dc.descriptionMidega, J.T., Muturi, E.J., Baliraine, F.N., Mbogo, C.M., Githure, J., Beier, J.C., Yan, G., Population structure of Anopheles gambiae along the Kenyan coast (2010) Acta Trop., 114, pp. 103-108
dc.descriptionMiller, M., (1997) A Windows Program for the Analysis of Allozyme and Molecular Population Genetics Data (TFPGA), , Department of Biological Sciences, Northern Arizona University, Flagstaff, USA
dc.descriptionMoreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G., Pyke, A.T., Hedges, L.M., Rocha, B.C., O'Neill, S.L., A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium (2009) Cell, 139, pp. 1268-1278
dc.description(2012) Ministério da Saúde. Situação da Dengue no Brasil, Brasília, DF, Brazil, , http://portal.saude.gov.br/portal/arquivos/pdf/boletimdengue, MS Available at: (accessed 02.03.13)
dc.descriptionNeis Ribeiro, A., Gassen Balsan, L., Moura, G., (2013) Análise das políticas públicas de combate à dengue En Contribuciones a lãs Ciencias Sociales, , www.eumed.net/rev/cccss/24/politicas-publicas-dengue.html, Available at
dc.descriptionPark, S.D.E., (2001) MSTools, version 3, , http://www.acer.gen.tcd.ie/sdepark/ms-toolkit, Available at: (accessed 04.04.10)
dc.descriptionPaupy, C., Vazeille-Falcoz, M., Mousson, L., Rodhain, F., Failloux, A.-B., Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzymes differentiation in the mosquito population according to human population density (2000) Am. J. Trop. Med. Hyg., 62, pp. 217-224
dc.descriptionPaupy, C., Chantha, N., Reynes, J.M., Failloux, A.-B., Factors influencing the population structure of Aedes aegypti from the many cities in Cambodia (2005) Heredity, 95, pp. 144-147
dc.descriptionPaupy, C., Brengues, C., Kamgang, B., Herve, J.-P., Fontenille, D., Simard, F., Gene Flow Between Domestic and Sylvan Populations of Aedes aegypti (Diptera: Culicidae) in North Cameroon (2008) J. Med. Entomol., 45, pp. 391-400
dc.descriptionPaupy, C., Le Goff, G., Brengues, C., Guerra, M., Revollo, J., Simon, Z.B., Hervé, J.-P., Fontenille, D., Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia (2012) Infect. Genet. Evol., 12, pp. 1260-1269
dc.descriptionPeel, D., Ovenden, J., Peel, S., NeEstimator: Software for Estimating Effective Population Size: Queensland Government (2004) Department of Primary Industries and Fisheries
dc.descriptionPinheiro, V.C.S., Tadei, P.W., Frequency, diversity, and productivity study on the Aedes aegypti most preferred containers in the city of Manaus, Amazonas, Brazil (2002) Rev. Inst. Med. Trop. São Paulo, 44, pp. 245-250
dc.descriptionPritchard, J.K., Stephens, M., Donnelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959
dc.descriptionRíos-Velásquez, C.M., Codeço, C.T., Honório, N.A., Sabroza, P.S., Moresco, M., Cunha, I.C.L., Levino, A., Luz, S.L.B., Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 617-623
dc.descriptionRavel, S., Monteny, N., Olmos, D.V., Verduro, J.E., Cuny, G., A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers (2001) Acta Trop., 78, pp. 241-250
dc.descriptionRavel, S., Hervé, J.P., Diarrassouba, S., Cuny, G., Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from CÔte d'Ivoire: evidence for a microgeographic genetic differentiation of mosquitos from Bouaké (2002) Acta Trop., 82, pp. 39-49
dc.descriptionRousset, F., Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux (2008) Mol. Ecol. Res., 8, pp. 103-106
dc.descriptionScarpassa, V.M., Conn, J.E., Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers (2007) Mem. Inst. Oswaldo Cruz, 102, pp. 319-327
dc.descriptionScarpassa, V.M., Cardoza, T.B., Cardoso-Júnior, R.P., Population genetics and phylogeography of Aedes aegypti (Diptera: Culicidae) from Brazil (2008) Am. J. Trop. Med. Hyg., 78, pp. 895-903
dc.descriptionSlotman, M.A., Kelly, N.B., Harrington, L.C., Kitthawee, S., Jones, J.W., Scott, T.W., Caccone, A., Powell, J.R., Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever (2007) Mol. Ecol. Notes, 7, pp. 168-171
dc.descriptionTabachnick, W.J., Powell, J.R., A world-wide survey of genetic variation in the yellow fever mosquito Aedes aegypti (1979) Genet. Res., 34, pp. 215-229
dc.descriptionTeixeira, M.G., Costa, M.C.N., Barreto, F., Barreto, M.L., Dengue: twenty-five years since reemergence in Brazil (2009) Cad. Saúde Pública, 25, pp. S7-S18
dc.descriptionVan Oosterhout, C., Hutchinson, W.F., Willis, D.P.M., Shipley, P., Micro-checker: software for identifying and correcting genotyping errors in microsatellite data (2004) Mol. Ecol. Notes, 4, pp. 535-538
dc.descriptionYébakima, A., Charles, C., Mousson, L., Vazeille, M., Yp-Tcha, M.M., Failloux, A.-B., Genetic heterogeneity of the dengue vector Aedes aegypti in Martinique (2004) Trop. Med. Int. Health, 9, pp. 582-587
dc.descriptionWallis, G.P., Tabachnick, W.J., Powell, J.R., Macrogeographic genetic variation in a human commensal: Aedes aegypti, the yellow fever mosquito (1983) Genet. Res., 41, pp. 241-258
dc.description(2007) Impact of Dengue, , www.who.int/csr/disease/dengue/impact/en/index.htm, WHO - World Health Organization Available at
dc.description(2010) First WHO Report on Neglected Tropical Diseases: Working to Overcome the Global Impact of Neglected Tropical Diseases, p. 172. , http://www.who.int/neglected_diseases, WHO - World Health Organization World Health Organization, Geneva, Available at: (accessed in 03.07.2012)
dc.languageen
dc.publisherElsevier
dc.relationActa Tropica
dc.rightsfechado
dc.sourceScopus
dc.titleTemporal Genetic Structure Of Major Dengue Vector Aedes Aegypti From Manaus, Amazonas, Brazil
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución