dc.creatorRodrigues F.A.
dc.creatorBramley R.G.V.
dc.creatorGobbett D.L.
dc.date2015
dc.date2015-06-25T12:51:28Z
dc.date2015-11-26T14:38:40Z
dc.date2015-06-25T12:51:28Z
dc.date2015-11-26T14:38:40Z
dc.date.accessioned2018-03-28T21:43:52Z
dc.date.available2018-03-28T21:43:52Z
dc.identifier
dc.identifierGeoderma. Elsevier, v. 243-244, n. , p. 183 - 195, 2015.
dc.identifier167061
dc.identifier10.1016/j.geoderma.2015.01.004
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922676003&partnerID=40&md5=9a73c4d7957027b0bc253437f4d1f197
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85253
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85253
dc.identifier2-s2.0-84922676003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249682
dc.descriptionThe use of high spatial resolution, on-the-go proximal soil sensing of apparent electrical conductivity (ECa) through electromagnetic induction (EMI) is increasingly common, in concert with yield mapping, to assist in the delineation of management zones for Precision Agriculture (PA). Less common, but gaining in popularity, is the use of gamma-radiometric (γ) soil sensing. Using contrasting sites in South Australia and Queensland, the specific objectives of the study were to assess for each site, region or all sites together, how well soil cation exchange capacity (CEC) and clay content may be predicted by EMI and γ sensing; to see whether the predictions were improved when both sensors were used, compared to a single sensor; and to evaluate the potential utility of the multi-sensor data in terms of understanding the variation in observed crop yield within sites. Of particular interest was evaluating a generic, as opposed to site-specific, approach to the simultaneous use and calibration of EMI and γ sensing at contrasting sites chosen across a dispersed geography and pedology.EMI and γ soil surveys were carried out at five sites across three cereal growing regions in South Australia, and at three sites in Queensland used for sugarcane production. Soil samples were also collected from each site for laboratory analysis. Data analysis comprised simple correlation analysis between soil sensor data and soil properties; fusion of sensor data by region and across all sites using weighted principal component analysis (PCA), with the data weighted on the basis of the two source sensors (weight of 0.5 assigned to ECa and the remaining weight divided equally amongst 238U, 232Th, 40K and 'total count' (CPS); weights of 0.125 to each). The output from the PCA was used to predict maps of CEC and clay using multiple regression.Simple correlation analysis showed the expected potential utility of both sensors for predicting soil properties by site and by region. The first three principal components (PCs) explained 98% of the data variation across regions and all sites. Models for the prediction of CEC and clay content, derived from the all sites PCs, were significant (p. <. 0.05) at five of the eight study sites. Overall, the results show that PCA may be used as a generic approach to the fusion of EMI and γ sensor across dispersed geography and contrasting pedology and farming systems and that maps of predicted CEC and clay content were potentially helpful in understanding within-paddock yield variation.
dc.description243-244
dc.description
dc.description183
dc.description195
dc.descriptionBramley, R.G.V., Lessons from nearly 20years of Precision Agriculture research, development and adoption as a guide to its appropriate application (2009) Crop Pasture Sci., 60, pp. 197-217
dc.descriptionBramley, R.G.V., Janik, L.J., Precision agriculture demands a new approach to soil and plant sampling and analysis-examples from Australia (2005) Commun. Soil Sci. Plant Anal., 36, pp. 9-22
dc.descriptionBramley, R.G.V., Jensen, T., Sugarcane yield monitoring: a protocol for yield map interpolation and key considerations in the collection of yield data (2013) Proc. Aust. Soc. Sugar Cane Technol., 35, p. 12p
dc.descriptionBramley, R.G.V., Trengove, S., Precision Agriculture in Australia: present status and recent developments (2013) Eng. Agric., 33, pp. 575-588
dc.descriptionBramley, R.G.V., Williams, S.K., A protocol for the construction of yield maps from data collected using commercially available grape yield monitors (2001) Cooperative Research Centre for Viticulture, Adelaide, South Australia., , http://www.cse.csiro.au/client_serv/resources/CRCVYield_Mapping_Protocol.pdf, (Accessed January 2015)
dc.descriptionBramley, R.G.V., Mowat, D., Gobbett, D., Branson, M., Wakefield, A., Wilksch, R., Mixing grapes and grain-scoping the opportunity for selective harvesting in cereals (2012) Capturing Opportunities and Overcoming Obstacles in Australian Agronomy. Proceedings of the 16th Australian Agronomy Conference, October 14-18, University of New England, , www.regional.org.au/au/asa/2012/precision-agriculture/8554_bramleyr.htm#TopOfPage, (Accessed January 2013)), I. Yanusa (Ed.)
dc.descriptionBramley, R.G.V., Gobbett, D.L., Panitz, J.H., Webster, A.J., McDonnell, P., Soil sensing at high spatial resolution-broadening the options available to the sugar industry (2012) Proceedings of the Australian Society of Sugar Cane Technologists, 34th Conference, Cairns, p. 8. , (Electronic format)
dc.descriptionCartwright, B., Zarcinas, B.A., Spouncer, L.A., Boron toxicity in South Australian barley crops (1986) Aust. J. Agric. Res., 37, pp. 351-359
dc.descriptionCastrignanò, A., Wong, M.T.F., Stelluti, M., De Benedetto, D., Sollitto, D., Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation (2012) Geoderma, pp. 78-89
dc.descriptionCattle, S.R., Meakin, S.N., Ruszkowski, O., Cameron, R.G., Using radiometric data to identify Aeolian dust additions to topsoil of the Hillston district, western NSW (2003) Aust. J. Soil Res., 41, pp. 1439-1456
dc.descriptionCorwin, D.L., Plant, R.E., Applications of apparent electrical conductivity in precision agriculture (2005) Comput. Electron. Agric., 46, pp. 1-10
dc.description(2012) SoilMapp for iPad: Soil Information at Your Fingertips, , http://www.csiro.au/soilmapp, CSIRO, Canberra, (Accessed May 2013)
dc.descriptionDe Benedetto, D., Castrignanò, A., Rinaldi, M., Ruggieri, S., Santoro, F., Figorito, B., Gualano, S., Tamborrino, R., An approach for delineating homogeneous zones by using multi-sensor data (2013) Geoderma, 199, pp. 117-127
dc.descriptionDe Benedetto, D., Castrignanò, A., Sollitto, D., Modugno, F., Buttafuoco, G., Lo Papa, G., Integrating geophysical and geostatistical techniques to map the spatial variation of clay (2012) Geoderma, pp. 53-63
dc.descriptionEfron, B., Bootstrap methods: another look at jackknife (1979) Ann. Stat., 7, pp. 1-26
dc.descriptionHedley, C.B., Yule, I.J., Eastwood, C.R., Shepherd, T.G., Arnold, G., Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils (2004) Aust. J. Soil Res., 42, pp. 389-400
dc.descriptionHendriks, P.H.G.M., Limburg, J., de Meijer, R.J., Full-spectrum analysis of natural gamma-ray spectra (2001) J. Environ. Radioact., 53, pp. 365-380
dc.descriptionHuang, J., Lark, R.M., Robinson, D.A., Lebron, I., Keith, A.M., Rawlins, B., Tye, A., Triantafilis, J., Scope to predict soil properties at within-field scale from small samples using proximally sensed γ-ray spectrometer and EM induction data (2014) Geoderma, pp. 69-80
dc.descriptionIsbell, R.F., (1996) The Australian Soil Classification, , CSIRO Publishing, Collingwood
dc.descriptionJanik, L.J., Skjemstad, J.O., Characterization and analysis of soils using mid-infrared partial least squares. II. Correlations with some laboratory data (1995) Aust. J. Soil Res., 33, pp. 637-650
dc.descriptionJanik, L.J., Merry, R.H., Skjemstad, J.O., Can mid infrared diffuse reflectance analysis replace soil extractions? (1998) Aust. J. Exp. Agric., 38, pp. 681-696
dc.descriptionJensen, T.A., Baillie, C., Bramley, R.G.V., Panitz, J.H., An assessment of sugarcane yield monitoring concepts and techniques from commercial yield monitoring systems (2012) Int. Sugar J., 115, pp. 53-57
dc.descriptionJohnson, R.A., Wichern, D.W., (1992) Applied Multivariate Statistical Analysis, , Prentice-Hall, Englewood Cliffs, NJ
dc.descriptionJolliffe, I.T., (2002) Principal Component Analysis, , Springer, New York
dc.descriptionKitchen, N.R., Drummond, S.T., Lund, E.D., Sudduth, K.A., Buchleiter, G.W., Soil electrical conductivity and topography related to yield for three contrasting soil-crop systems (2003) Agron. J., 95, pp. 483-495
dc.descriptionLehman, A., O'Rourke, N., Hatcher, L., Stepanski, E.J., (2005) JMP® for Basic Univariate and Multivariate Statistics: A Step-by-Step Guide, , SAS Institute Inc., Cary, NC
dc.descriptionLoonstra, E.H., van Egmond, F.M., On-the-go measurement of soil gamma radiation (2009) Precision Agriculture 09. Proceedings of the 7th European Conference on Precision Agriculture, 6-8 July, Wageningen, The Netherlands, pp. 415-422. , E.J. van Henten, D. Goense, C. Lokhorst (Eds.)
dc.descriptionMahmood, H.S., Hoogmoed, W.B., van Henten, E.J., Sensor data fusion to predict multiple soil properties (2012) Precis. Agric., 13, pp. 628-645
dc.descriptionMcBratney, A.B., Minasny, B., Whelan, B.M., Obtaining 'useful' high-resolution soil data from proximally-sensed electrical conductivity/resistivity (PSEC/R) surveys (2005) Proceedings of the 5th European Conference on Precision Agriculture, pp. 503-510. , Wageningen Academic Publishers, The Netherlands, J.V. Stafford (Ed.)
dc.descriptionMcNeill, J.D., Electromagnetic terrain conductivity measurement at low induction numbers (1980) Technical Note TN-6, , Geonics Ltd., Mississauga, ON, Canada
dc.descriptionMinasny, B., McBratney, A.B., Whelan, B.M., VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, the University of Sydney, NSW 2006, , http://sydney.edu.au/agriculture/pal/software/vesper.shtml, (accessed April 2013)
dc.descriptionMyers, D.B., Kitchen, N.R., Sudduth, K.A., Grunwald, S., Miles, R.J., Sadler, E.J., Udawatta, R.P., Combining proximal and penetrating soil electrical conductivity sensors for high-resolution digital soil mapping (2010) Proximal Soil Sensing, pp. 233-243. , Springer, Dordrecht, R.A. Viscarra Rossel, A.B. McBratney, B. Minasny (Eds.)
dc.descriptionPiikki, K., Söderström, M., Stenberg, B., Sensor data fusion for topsoil clay mapping of an agricultural field (2011) Proceedings of the Second Global Workshop on Proximal Soil Sensing, Canada, pp. 56-59. , http://adamchukpa.mcgill.ca/gwpss/materials.html, McGill University Press, Montreal, Canada, (Accessed March 2013)), V.I. Adamchuck, R.A. Viscarra Rossel (Eds.)
dc.descriptionPiikki, K., Söderström, M., Stenberg, B., Sensor data fusion for topsoil clay mapping (2013) Geoderma, 199, pp. 106-116
dc.descriptionPracilio, G., Adams, M.L., Smettem, K.R.J., Harper, R.J., Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry (2006) Plant Soil, 282, pp. 67-82
dc.description(2011) Soil Chemical Methods-Australasia, , CSIRO Publishing, Collingwood, G.E. Rayment, D.J. Lyons (Eds.)
dc.descriptionRobertson, M.J., Llewellyn, R.S., Mandel, R., Lawes, R., Bramley, R.G.V., Swift, L., Metz, N., O'Callaghan, C., Adoption of variable rate technology in the Australian grains industry: status, issues and prospects (2012) Precis. Agric., 13, pp. 181-199
dc.descriptionSchirrmann, M., Gebbers, R., Kramer, E., Seidel, J., Evaluation of soil sensor fusion for mapping macronutrients and soil pH (2011) Proceedings of the Second Global Workshop on Proximal Soil Sensing, Canada, pp. 48-51. , http://adamchukpa.mcgill.ca/gwpss/materials.html, McGill University Press, Montreal, Canada, (Accessed March 2013)), V.I. Adamchuck, R.A. Viscarra Rossel (Eds.)
dc.descriptionSchroeder, B., Panitz, J., Wood, A., Moody, P., Salter, B., Soil-specific nutrient management guidelines for sugarcane production in the Bundaberg District (2007) Technical Publication TE07004, , BSES Limited, Indooroopilly, Queensland, Australia
dc.descriptionSoriano-Disla, J.M., Janik, L.J., Viscarra Rossel, R.A.V., Macdonald, L.M., McLaughlin, M.J., The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties (2014) Appl. Spectrosc. Rev., 49, pp. 139-186
dc.descriptionTaylor, J.A., Short, M., McBratney, A.B., Wilson, J., Comparing the ability of multiple soil sensors to predict soil properties in a Scottish potato production system (2010) Proximal Soil Sensing, pp. 387-396. , Springer, Dordrecht, R.A. Viscarra Rossel, A.B. McBratney, B. Minasny (Eds.)
dc.descriptionVan Egmond, F.M., Loonstra, E.H., Limburg, J., Gamma ray sensor for topsoil mapping: The Mole (2010) Proximal Soil Sensing, pp. 323-332. , Springer, Dordrecht, R.A. Viscarra Rossel, A.B. McBratney, B. Minasny (Eds.)
dc.descriptionWhelan, B.M., McBratney, A.B., The "Null Hypothesis" of Precision Agriculture management (2000) Precis. Agric., 2, pp. 265-279
dc.descriptionWillmott, C., Matsuura, K., Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance (2005) Clim. Res., 30, pp. 79-82
dc.descriptionWong, M.T.F., Asseng, S., Robertson, M.J., Oliver, Y., Mapping subsoil acidity and shallow soil across a field with information from yield maps, Geophysical Sensing and the Grower (2008) Precis. Agric., 9, pp. 3-15
dc.descriptionWong, M.T.F., Oliver, Y.M., Robertson, M.J., Gamma-radiometric assessment of soil depth across a landscape not measurable using electromagnetic surveys (2009) Soil Sci. Soc. Am. J., 73, pp. 1261-1267
dc.descriptionWong, M.T.F., Witter, K., Oliver, Y., Robertson, K.J., Use of EM38 and gamma ray spectrometry as complementary sensors for high-resolution soil property mapping (2010) Proximal Soil Sensing, pp. 343-349. , Springer, Dordrecht, R.A. Viscarra Rossel, A.B. McBratney, B. Minasny (Eds.)
dc.descriptionWood, A., Schroeder, B., Stewart, S., (2003) Soil Specific Management Guidelines for Sugarcane Production-Soil Reference Booklet for the Herbert District, , CRC for Sustainable Sugar Production, Townsville
dc.languageen
dc.publisherElsevier
dc.relationGeoderma
dc.rightsfechado
dc.sourceScopus
dc.titleProximal Soil Sensing For Precision Agriculture: Simultaneous Use Of Electromagnetic Induction And Gamma Radiometrics In Contrasting Soils
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución