dc.creatorLopes M.S.
dc.creatorJardini A.L.
dc.creatorFilho R.M.
dc.date2014
dc.date2015-06-25T17:55:28Z
dc.date2015-11-26T14:38:38Z
dc.date2015-06-25T17:55:28Z
dc.date2015-11-26T14:38:38Z
dc.date.accessioned2018-03-28T21:43:50Z
dc.date.available2018-03-28T21:43:50Z
dc.identifier
dc.identifierChemical Engineering Transactions. Italian Association Of Chemical Engineering - Aidic, v. 38, n. , p. 331 - 336, 2014.
dc.identifier19749791
dc.identifier10.3303/CET1438056
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84901425823&partnerID=40&md5=9b5103f114525eafb9e442662cc3f610
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86839
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86839
dc.identifier2-s2.0-84901425823
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249671
dc.descriptionThe development of biomaterials for application in medicine is one of the great challenges of research in material science. The poly (a-hydroxy acids) are the principal biodegradable and bioresorbable polymers used in tissue engineering. Among the biomaterials (biopolymers) used in the medical field, the poly (lactic acid) (PLA) has received significant attention. It is produced from lactic acid, a naturally occurring organic acid that can be produced by fermentation. The attractive price and commercial availability of lactic acid are important reasons for PLA development. PLA and its copolymers are being used in biomedical area in the form of implants or devices due to its excellent biocompatibility and biodegradability. In this study, lactide was synthesized and Poly lactic acid produced. The objective of this study was to investigate the PLA production in laboratory scale. Characterization by FTIR of the lactide and PLA production was made to confirm the polymerization and a possible use as biomaterial. © 2014, AIDIC Servizi S.r.l.
dc.description38
dc.description
dc.description331
dc.description336
dc.descriptionAuras, R., Harte, B., Selke, S., An overview of polylactides as packaging materials (2004) Macromolecular Bioscience, 4 (9), pp. 835-864. , DOI 10.1002/mabi.200400043
dc.descriptionBenicewicz, B.C., Hopper, P.K., Review: Polymers for absorbable surgical sutures - Part II (1991) Journal of Bioactive and Compatible Polymers, 1, pp. 64-94
dc.descriptionBouapao, L., Tsuji, H., Tashiro, K., Zhang, J., Hanesaka, M., Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s (2007) Polymer, 50, pp. 4007-4017
dc.descriptionCheng, Y., Deng, S., Chen, P., Ruan, R., Polylactic acid (PLA) synthesis and modifications: A review (2009) Frontiers of Chemistry in China, 4, pp. 259-264
dc.descriptionDavis, S.S., Illum, L., Stolnik, S., Polymers in drug delivery (1996) Current Opinion in Colloid & Interface Science, 1, pp. 660-666
dc.descriptionDrumright, R.E., Gruber, P.R., Henton, D.E., Polylactic acid technology (2000) Advanced Materials, 12 (23), pp. 1841-1846. , DOI 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
dc.descriptionFreed, L.E., Engelmayr, Jr.G.C., Borenstein, J.T., Moutos, F.T., Guilak, F., Advanced material strategies for tissue engineering scaffolds (2009) Advanced Materials, 21, pp. 3410-3418
dc.descriptionFukushima, K., Kimura, Y., An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight (2008) Journal of Polymer Science Part A: Polymer Chemistry, 46, pp. 3714-3722
dc.descriptionGriffith, L.G., Polymeric biomaterials (2000) Acta Materialia, 48 (1), pp. 263-277. , www.faostat.fao.org, DOI 10.1016/S1359-6454(99)00299-2
dc.descriptionGupta, B., Revagade, N., Hilborn, J., Poly(lactic acid) fiber: An overview (2007) Progress in Polymer Science (Oxford), 32 (4), pp. 455-482. , DOI 10.1016/j.progpolymsci.2007.01.005, PII S007967000700007X
dc.descriptionHu, J., Sun, X., Ma, H., Xie, C., Eugene Chen, Y., Ma, P.X., Porous nanofibrous PLLA scaffolds for vascular tissue engineering (2012) Biomaterials, 31, pp. 7971-7977
dc.descriptionLim, L.T., Auras, R., Rubino, M., Processing technologies for poly(lactic acid) (2008) Progress in Polymer Science, 33, pp. 820-852
dc.descriptionNampoothiri, K.M., Nair, N.R., John, R.P., An overview of the recent developments in polylactide (PLA) research (2010) Bioresource Technology, 101, pp. 8493-8501
dc.descriptionNikolic, L., Ristic, I., Adnadjevic, B., Nikolic, V., Jovanovic, J., Stankovic, M., Novel microwave- assisted synthesis of poly(D,L-lactide): The influence of monomer/initiator molar ratio on the product properties (2010) Sensors, 10, pp. 5063-5073
dc.descriptionSaviolilopes, M., Jardini, A.L., Maciel, F.R., Poly (lactic acid) production for tissue engineering applications (2012) Procedia Engineering, 42, pp. 1402-1413
dc.descriptionValonen, P.K., Moutos, F.T., Kusanagi, A., Moretti, M.G., Diekman, B.O., Welter, J.F., Caplan, A.I., Freed, L.E., In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly (3-caprolactone) scaffolds (2010) Biomaterials, 31, pp. 2193-2200
dc.descriptionYamane, H., Sasai, K., Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic acid) (2003) Polymer, 44 (8), pp. 2569-2575. , DOI 10.1016/S0032-3861(03)00092-2
dc.descriptionYoo, D.K., Kim, D., Synthesis of lactide from oligomeric PLA: Effects of temperature, pressure, and catalyst (2006) Macromolecular Research, 14, pp. 510-516
dc.languageen
dc.publisherItalian Association of Chemical Engineering - AIDIC
dc.relationChemical Engineering Transactions
dc.rightsfechado
dc.sourceScopus
dc.titleSynthesis And Characterizations Of Poly (lactic Acid) By Ring-opening Polymerization For Biomedical Applications
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución