dc.contributorOspina Mejía, Jaime Alberto
dc.creatorAbad Gómez, Juan Pablo
dc.date.accessioned2024-02-02T21:19:16Z
dc.date.accessioned2024-08-05T15:44:20Z
dc.date.available2024-02-02T21:19:16Z
dc.date.available2024-08-05T15:44:20Z
dc.date.created2024-02-02T21:19:16Z
dc.date.issued2023
dc.identifierhttps://hdl.handle.net/10784/33244
dc.identifier332.6 A116
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9537898
dc.description.abstractValue-at-Risk (VaR) is a measure of market risk that aims to establish the upper limit of possible losses in the value of an asset or portfolio of assets, under a previously defined confidence level. Nowadays there are different approaches to estimate this measure such as parametric methods, non-parametric methods and Extreme Value Theory (EVT). This research does a comparison between estimations made using the Historical Simulation, Variance-Covariance, Extreme Value Theory, and Volatility Adjusted methods. The results obtained show that the Volatility Adjusted VaR model proposed by Hull & White (1998) has the best fit in high-volatility time periods. While EVT VaR shows the best fit on normal time periods for very high confidence levels.
dc.languagespa
dc.publisherUniversidad EAFIT
dc.publisherMaestría en Administración Financiera
dc.publisherEscuela de Finanzas, Economía y Gobierno. Departamento de Finanzas
dc.publisherMedellín
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAcceso abierto
dc.rightsTodos los derechos reservados
dc.subjectValor en riesgo
dc.subjectTeoría de valor extremo
dc.subjectRiesgo de mercado
dc.titleMetodologías de estimación del valor en riesgo (VaR) : índice Nasdaq compuesto bajo, métodos paramétricos, no paramétricos y de valor extremo
dc.typemasterThesis
dc.typeinfo:eu-repo/semantics/masterThesis


Este ítem pertenece a la siguiente institución