dc.contributorGarcía López, Yván Jesús
dc.contributorQuiroz Flores, Juan Carlos
dc.contributorMolina Cueva, Airton Fabrizio (Ingeniería Industrial)
dc.contributorCueva Roldan, Renzo Aaron (Ingeniería Industrial)
dc.creatorMolina Cueva, Airton Fabrizio
dc.creatorCueva Roldan, Renzo Aaron
dc.creatorGarcía López, Yván Jesús
dc.creatorQuiroz Flores, Juan Carlos
dc.date.accessioned2023-12-13T17:08:34Z
dc.date.accessioned2024-05-08T13:03:51Z
dc.date.available2023-12-13T17:08:34Z
dc.date.available2024-05-08T13:03:51Z
dc.date.created2023-12-13T17:08:34Z
dc.date.issued2023
dc.identifierMolina-Cueva, A. F., Cueva-Roldan, R. A., Garcia-Lopez, I J., & Quiroz-Flores, J. C. (2023). Application of the use of Time Series Models: Tropospheric Nitrogen Dioxide (NO2) in Different Meteorological Systems in Two Districts of the City of Lima. International Journal of Engineering Trends and Technology, 71(10), 1-10. https://doi.org/10.14445/22315381/IJETT-V71I10P201
dc.identifier2231–5381
dc.identifierhttps://hdl.handle.net/20.500.12724/19528
dc.identifierInternational Journal of Engineering Trends and Technology
dc.identifierhttps://doi.org/10.14445/22315381/IJETT-V71I10P201
dc.identifier2-s2.0-85177039977
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9355499
dc.description.abstractThis research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.
dc.languageeng
dc.publisherSeventh Sense Research Group
dc.relationurn:issn: 2231–5381
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectContaminación del aire
dc.subjectDióxido de nitrógeno
dc.subjectAir pollution
dc.subjectNitrogen dioxide
dc.subjectLima (Perú)
dc.titleApplication of the Use of Time Series Models: Tropospheric Nitrogen Dioxide (NO2) in Different Meteorological Systems in Two Districts of the City of Lima
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución