dc.contributorZavaleta Sotelo, Jason David (Ingeniería de Sistemas)
dc.creatorZavaleta Sotelo, Jason David
dc.date.accessioned2024-01-11T15:50:44Z
dc.date.accessioned2024-05-08T13:00:57Z
dc.date.available2024-01-11T15:50:44Z
dc.date.available2024-05-08T13:00:57Z
dc.date.created2024-01-11T15:50:44Z
dc.date.issued2021
dc.identifierZavaleta Sotelo, J. (2021). Implementación de una Red Neuronal Convolucional para la clasificación de ruido sísmico y señales sísmicas. In IEEE Congreso Estudiantil de Electrónica y Electricidad (INGELECTRA). https://doi.org/10.1109/INGELECTRA54297.2021.9748071
dc.identifierhttps://hdl.handle.net/20.500.12724/19579
dc.identifierIEEE Congreso Estudiantil de Electrónica y Electricidad, INGELECTRA 2021
dc.identifierhttps://doi.org/10.1109/INGELECTRA54297.2021.9748071
dc.identifier2-s2.0-85128681868
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9355327
dc.description.abstractThis article develops a detection methodology of seismic events based on Convolutional Neural Network in order to improve the processing of huge rawdata of seismograms. This is a trained model by using 45 thousand signals between seismic event and noise, databases of the Geophysical Institute of Peru (IGP) and STEAD (Stanford Earthquake Dataset), for testing we use 15 thousand instances, I obtain a promising results, the confusion matrix, 99.18% of success and an accuracy of 99.69%. This method shows better performance that STA/LTA classical algorithm with less false-positives in 20% of 1000, it could improve the real time monitoring.
dc.languagespa
dc.publisherIEEE
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectMicrosismos
dc.subjectRedes neuronales (Informática)
dc.subjectMicroseisms
dc.subjectNeural networks (Computer science)
dc.titleImplementación de una Red Neuronal Convolucional para la clasificación de ruido sísmico y señales sísmicas
dc.typeinfo:eu-repo/semantics/conferenceObject


Este ítem pertenece a la siguiente institución