dc.creatorBALBIS MOREJON, MILEN
dc.creatorCabello Eras, Juan José
dc.creatorRey-Hernández, Javier M.
dc.creatorIsaza-Roldan, Cesar A.
dc.creatorRey-Martınez, Francisco J.
dc.date2023-08-24T19:16:41Z
dc.date2023-08-24T19:16:41Z
dc.date2023
dc.date.accessioned2023-10-03T20:07:27Z
dc.date.available2023-10-03T20:07:27Z
dc.identifierMilen Balbis-Morejón, Juan J. Cabello-Eras, Javier M. Rey-Hernández, Cesar Isaza-Roldan, Francisco J. Rey-Martínez, Selection of HVAC technology for buildings in the tropical climate case study, Alexandria Engineering Journal, Volume 69, 2023, Pages 469-481, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2023.02.015
dc.identifier1110-0168
dc.identifierhttps://hdl.handle.net/11323/10410
dc.identifier10.1016/j.aej.2023.02.015
dc.identifier2090-2670
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174390
dc.descriptionIn this paper, the integral performance indicator for selecting HVAC systems (ACPI) is applied to select the Air Conditioning (AC) system with better results in their life cycle for a typical building in Barranquilla, Colombia. The AC systems under study were: direct expansion system (Split and VRF), air-cooled system (VAC and VAV), and water-cooled system (Chiller). Of the six selection criteria of ACPI, the energy consumption index (EC) and thermal comfort (TC) were calculated through energy simulation of buildings, the regulations were used for IAQ and carbon emissions (CE), and were estimated the investment costs (IC) and operating and maintenance costs (OMC). The best-performance AC system for the building was the air-cooled AC system got the best ACPI values between 25 % and 22.4 %, followed by the water-cooled system with 22.3 %, and finally the direct expansion systems between 16.8 % and 13.5 %, influencing in this level of priority the IAQ and IC criteria. This study contributes to introducing in Colombia a multifactorial analysis to select the more proper AC system technology according to the building and location conditions.
dc.format13 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherAlexandria University
dc.publisherEgypt
dc.relationAlexandria Engineering Journal
dc.relation[1] R. Nambiar, R. Shroff, S. Handy, Smart cities: Challenges and opportunities, in: 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018. 2018-Janua, 2018, pp. 243–250, doi: 10.1109/COMSNETS.2018.8328204.
dc.relation[2] S. Talari, M. Shafie-Khah, P. Siano, V. Loia, A. Tommasetti, J.P.S. Catalão A review of smart cities based on the internet of things concept Energies, 10 (2017), pp. 1-23, 10.3390/en10040421
dc.relation[3] F. Wurtz, B. Delinchant “Smart buildings” integrated in “smart grids”: a key challenge for the energy transition by using physical models and optimization with a “human-in-the-loop” approach Comptes Rendus Phys., 18 (2017), pp. 428-444, 10.1016/j.crhy.2017.09.007
dc.relation[4] IEA, The future of cooling: opportunities for energy-efficient air conditioning, Futur. Cool. Oppor. Energy-Efficient Air Cond. (2018) 92, https://webstore.iea.org/download/direct/1036.
dc.relation[5] D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, K. Petrichenko Heating and cooling energy trends and drivers in buildings Renew. Sustain. Energy Rev., 41 (2015), pp. 85-98, 10.1016/j.rser.2014.08.039
dc.relation[6] IEA, Air conditioning use emerges as one of the key drivers of global electricity-demand growth, IEA, 2018, p. 1, http://www.iea.org/news/air-conditioning-use-emerges-as-one-of-the-key-drivers-of-global-electricity-demand-growth.
dc.relation[7] A. Holst, Air conditioner demand worldwide from 2012 to 2018, Statista, 2020.
dc.relation[8] JRAIA, World Air Conditioner Demand by Region, 2019, https://www.jraia.or.jp/english/World_AC_Demand.pdf.
dc.relation[9] R. de Best, Global market for HVAC systems in 2019, with a forecast for 2030, Statisa, 2020, https://www.statista.com/statistics/414960/global-market-for-commercial-and-residential-hvac-systems/.
dc.relation[10] IEA, Cooling – Analysis - IEA, IEA, 2020, https://www.iea.org/reports/cooling.
dc.relation[11] IEA, Cooling – Analysis - IEA 2022, https://www.iea.org/reports/cooling.
dc.relation[12] UPME, Plan De Acción Indicativo De Eficiencia Energética 2017 - 2022, Bogotá D.C., 2017, http://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdf.
dc.relation[13] C. Correa, A. Sánchez, A. Panesso, A multi-objective methodology applied to the transmission expansion planning considering wind power and demand uncertainties, INGE CUC 16 (2020) 267–284, doi: 10.17981/ingecuc.16.1.2020.20.
dc.relation[14] UPME, Determinación del potencial de reducción del consumo energético en el sector servicios en Colombia, Bogotá, 2013, https://bdigital.upme.gov.co/handle/001/1012.
dc.relation[15] L.J. Ramírez, G.A. Pernett, Eficiencia Energética en Edificaciones. Informe de Evaluación Final, Bogota, 2013, https://erc.undp.org/evaluation/documents/download/7612.
dc.relation[16] E.A. Ocampo Batlle, J.C. Escobar Palacio, E.E. Silva Lora, A.M. Martínez Reyes, M. Melian Moreno, M. Balbis Morejon, A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: case study, Federal University of Itajubá (UNIFEI), J. Clean. Prod. 244 (2020) 118551, doi: 10.1016/j.jclepro.2019.118551.
dc.relation[17] GPR, DEE, Análisis de impacto normativo. Reglamento técnico de etiquetado, Bogotá, 2019, https://www.minenergia.gov.co/documents/10192/24144857/AIN+RETIQ+20-08-2019.pdf.
dc.relation[18] UPME, Plan Energetico Nacional 2020-2050 (UPME), 2019, p. 83, https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx.
dc.relation[19] R. de Best, Global market share HVAC systems by product type 2017, Statista, 2021.
dc.relation[20] M.R. Brambley, D. Hansen, P. Haves, D.R. Holmberg, S.C. McDonald, K.W. Roth, P. Torcellini, Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways, Pacific Northwest Natl. Lab., 2005, p. 162, doi: 10.1016/j.niox.2010.08.001.
dc.relation[21] Z. Afroz, G. Higgins, T. Urmee, G. Shafiullah Technological advancement of energy management facility of institutional buildings: a case study Energy Proc., 142 (2017), pp. 3088-3095, 10.1016/j.egypro.2017.12.449
dc.relation[22] ASHRAE, ASHRAE handbook. HVAC systems and equipment., I-P Editio, American Society of Heating, Refrigeration and Air-conditioning Engineers, Inc., Atlanta, 2008.
dc.relation[23] M. Shahrestani, R. Yao, G.K. Cook A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK Energ. Build. (2018), 10.1016/j.enbuild.2017.10.089
dc.relation[24] M. Shahrestani, R. Yao, G.K. Cook Decision making for HVAC&R system selection for a typical office building in the UK ASHRAE Trans., 118 (2012), pp. 222-229
dc.relation[25] A. Avgelis, A.M. Papadopoulos Application of multicriteria analysis in designing HVAC systems Energ. Build., 41 (2009), pp. 774-780, 10.1016/j.enbuild.2009.02.011
dc.relation[26] J. Wang, M.E. Be, Y. Jing, C. Zhang Fuzzy multi-criteria evaluation model of HVAC schemes in optimal combination weighting method Build. Serv. Eng. Res. Technol., 30 (2009), pp. 287-304, 10.1177/0143624409338502
dc.relation[27] M. Shahrestani, R. Yao, G.K. Cook Characterising the energy performance of centralised HVAC&R systems in the UK Energ. Build., 62 (2013), pp. 239-247, 10.1016/j.enbuild.2013.03.016 View PDFView articleView in ScopusGoogle Scholar
dc.relation[28] P. Arroyo, I.D. Tommelein, G. Ballard, P. Rumsey Choosing by advantages: a case study for selecting an HVAC system for a net zero energy museum Energ. Build., 111 (2016), pp. 26-36, 10.1016/j.enbuild.2015.10.023
dc.relation[29] Y.J. Kim, K.U. Ahn, C.S. Park Decision making of HVAC system using Bayesian Markov chain Monte Carlo method Energ. Build., 72 (2014), pp. 112-121, 10.1016/j.enbuild.2013.12.039 View PDFView articleView in ScopusGoogle Scholar
dc.relation[30] M. Balbis-Morejón, J.J. Cabello-Eras, J.M. Rey-Hernández, F.J. Rey-Martínez Global Air Conditioning Performance Indicator (ACPI) for buildings, in tropical climate Build. Environ., 203 (2021), Article 108071, 10.1016/j.buildenv.2021.108071 View PDFView articleView in ScopusGoogle Scholar
dc.relation[31] Shanghai Haicheng, Shanghai Haicheng. Site office container, 2020), p. 1, http://www.shs-house.com/site-officecontainer-15264373440020726.html#. Google Scholar
dc.relation[32] Design Builder Software Ltd., 2018, https://www.designbuilder-lat.com/.
dc.relation[33] M. Balbis-Morejón, J.M. Rey-Hernández, C. Amaris-Castilla, E. Velasco-Gómez, J.F. San José-Alonso, F.J. Rey-Martínez Experimental study and analysis of thermal comfort in a university campus building in tropical climate Sustainability, 12 (2020), p. 8886, 10.3390/su12218886 View article Google Scholar
dc.relation[34] L. Pérez-Lombard, J. Ortiz, I.R. Maestre, J.F. Coronel Constructing HVAC energy efficiency indicators Energ. Build., 47 (2012), pp. 619-629, 10.1016/j.enbuild.2011.12.039 View PDFView articleView in ScopusGoogle Scholar
dc.relation[35] L. Pérez-lombard, J. Ortiz, J.F. Coronel, I.R. Maestre A review of HVAC systems requirements in building energy regulations Energ. Build., 43 (2011), pp. 255-268, 10.1016/j.enbuild.2010.10.025 View PDFView articleView in ScopusGoogle Scholar
dc.relation[36] M.M. Castilla, J.D. Álvarez, M. Berenguel, M. Pérez, F. Rodríguez, J.L. Guzmán Técnicas de Control del Confort en Edificios Rev. Iberoam. Automática e Informática Ind., 7 (2010), pp. 5-24, 10.4995/riai.2010.03.01 View PDFView articleView in ScopusGoogle Scholar
dc.relation[37] E.M. González Cruz, G. Claret, B. Morales, About thermal comfort: neutral temperatures in the humid tropic, Rev. Investig. Científica En Arquit. J. Sci. Res. (2009) 33–38, http://www.redalyc.org/pdf/948/94814777005.pdf. Google Scholar
dc.relation[38] Z. Lin, S. Deng A study on the thermal comfort in sleeping environments in the subtropics-developing a thermal comfort model for sleeping environments Build. Environ., 43 (2008), pp. 70-81, 10.1016/j.buildenv.2006.11.026 View PDFView articleView in ScopusGoogle Scholar
dc.relation[39] C. Valderrama, A. Cohen, P. Lagiere, J.R. Puiggali Análisis del comportamiento energético en un conjunto de edificios multifuncionales. Caso de estudio Campus Universitario Rev. La Constr., 10 (2011), pp. 26-39 View article CrossRefView in ScopusGoogle Scholar
dc.relation[40] J. Van Hoof, L. Schellen, V. Soebarto, J.K.W. Wong, J.K. Kazak Ten questions concerning thermal comfort and ageing Build. Environ., 120 (2017), pp. 123-133, 10.1016/j.buildenv.2017.05.008 View PDFView articleView in ScopusGoogle Scholar
dc.relation481
dc.relation469
dc.relation69
dc.rights© 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1110016823001138
dc.subjectACPI
dc.subjectBuilding energy efficiency
dc.subjectEnergy simulation
dc.subjectAir-conditioning selection
dc.subjectTropical climate
dc.titleSelection of HVAC technology for buildings in the tropical climate case study
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución