dc.creator | BALBIS MOREJON, MILEN | |
dc.creator | Cabello Eras, Juan José | |
dc.creator | Rey-Hernández, Javier M. | |
dc.creator | Isaza-Roldan, Cesar A. | |
dc.creator | Rey-Martınez, Francisco J. | |
dc.date | 2023-08-24T19:16:41Z | |
dc.date | 2023-08-24T19:16:41Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T20:07:27Z | |
dc.date.available | 2023-10-03T20:07:27Z | |
dc.identifier | Milen Balbis-Morejón, Juan J. Cabello-Eras, Javier M. Rey-Hernández, Cesar Isaza-Roldan, Francisco J. Rey-Martínez, Selection of HVAC technology for buildings in the tropical climate case study, Alexandria Engineering Journal, Volume 69, 2023, Pages 469-481, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2023.02.015 | |
dc.identifier | 1110-0168 | |
dc.identifier | https://hdl.handle.net/11323/10410 | |
dc.identifier | 10.1016/j.aej.2023.02.015 | |
dc.identifier | 2090-2670 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174390 | |
dc.description | In this paper, the integral performance indicator for selecting HVAC systems (ACPI) is applied to select the Air Conditioning (AC) system with better results in their life cycle for a typical building in Barranquilla, Colombia. The AC systems under study were: direct expansion system (Split and VRF), air-cooled system (VAC and VAV), and water-cooled system (Chiller). Of the six selection criteria of ACPI, the energy consumption index (EC) and thermal comfort (TC) were calculated through energy simulation of buildings, the regulations were used for IAQ and carbon emissions (CE), and were estimated the investment costs (IC) and operating and maintenance costs (OMC). The best-performance AC system for the building was the air-cooled AC system got the best ACPI values between 25 % and 22.4 %, followed by the water-cooled system with 22.3 %, and finally the direct expansion systems between 16.8 % and 13.5 %, influencing in this level of priority the IAQ and IC criteria. This study contributes to introducing in Colombia a multifactorial analysis to select the more proper AC system technology according to the building and location conditions. | |
dc.format | 13 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Alexandria University | |
dc.publisher | Egypt | |
dc.relation | Alexandria Engineering Journal | |
dc.relation | [1] R. Nambiar, R. Shroff, S. Handy, Smart cities: Challenges and opportunities, in: 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018. 2018-Janua, 2018, pp. 243–250, doi: 10.1109/COMSNETS.2018.8328204. | |
dc.relation | [2] S. Talari, M. Shafie-Khah, P. Siano, V. Loia, A. Tommasetti, J.P.S. Catalão
A review of smart cities based on the internet of things concept
Energies, 10 (2017), pp. 1-23, 10.3390/en10040421 | |
dc.relation | [3] F. Wurtz, B. Delinchant
“Smart buildings” integrated in “smart grids”: a key challenge for the energy transition by using physical models and optimization with a “human-in-the-loop” approach
Comptes Rendus Phys., 18 (2017), pp. 428-444, 10.1016/j.crhy.2017.09.007 | |
dc.relation | [4] IEA, The future of cooling: opportunities for energy-efficient air conditioning, Futur. Cool. Oppor. Energy-Efficient Air Cond. (2018) 92, https://webstore.iea.org/download/direct/1036. | |
dc.relation | [5] D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, K. Petrichenko
Heating and cooling energy trends and drivers in buildings
Renew. Sustain. Energy Rev., 41 (2015), pp. 85-98, 10.1016/j.rser.2014.08.039 | |
dc.relation | [6] IEA, Air conditioning use emerges as one of the key drivers of global electricity-demand growth, IEA, 2018, p. 1, http://www.iea.org/news/air-conditioning-use-emerges-as-one-of-the-key-drivers-of-global-electricity-demand-growth. | |
dc.relation | [7] A. Holst, Air conditioner demand worldwide from 2012 to 2018, Statista, 2020. | |
dc.relation | [8] JRAIA, World Air Conditioner Demand by Region, 2019, https://www.jraia.or.jp/english/World_AC_Demand.pdf. | |
dc.relation | [9] R. de Best, Global market for HVAC systems in 2019, with a forecast for 2030, Statisa, 2020, https://www.statista.com/statistics/414960/global-market-for-commercial-and-residential-hvac-systems/. | |
dc.relation | [10] IEA, Cooling – Analysis - IEA, IEA, 2020, https://www.iea.org/reports/cooling. | |
dc.relation | [11] IEA, Cooling – Analysis - IEA 2022, https://www.iea.org/reports/cooling. | |
dc.relation | [12] UPME, Plan De Acción Indicativo De Eficiencia Energética 2017 - 2022, Bogotá D.C., 2017, http://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdf. | |
dc.relation | [13] C. Correa, A. Sánchez, A. Panesso, A multi-objective methodology applied to the transmission expansion planning considering wind power and demand uncertainties, INGE CUC 16 (2020) 267–284, doi: 10.17981/ingecuc.16.1.2020.20. | |
dc.relation | [14] UPME, Determinación del potencial de reducción del consumo energético en el sector servicios en Colombia, Bogotá, 2013, https://bdigital.upme.gov.co/handle/001/1012. | |
dc.relation | [15] L.J. Ramírez, G.A. Pernett, Eficiencia Energética en Edificaciones. Informe de Evaluación Final, Bogota, 2013, https://erc.undp.org/evaluation/documents/download/7612. | |
dc.relation | [16] E.A. Ocampo Batlle, J.C. Escobar Palacio, E.E. Silva Lora, A.M. Martínez Reyes, M. Melian Moreno, M. Balbis Morejon, A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: case study, Federal University of Itajubá (UNIFEI), J. Clean. Prod. 244 (2020) 118551, doi: 10.1016/j.jclepro.2019.118551. | |
dc.relation | [17] GPR, DEE, Análisis de impacto normativo. Reglamento técnico de etiquetado, Bogotá, 2019, https://www.minenergia.gov.co/documents/10192/24144857/AIN+RETIQ+20-08-2019.pdf. | |
dc.relation | [18] UPME, Plan Energetico Nacional 2020-2050 (UPME), 2019, p. 83, https://www1.upme.gov.co/Paginas/Plan-Energetico-Nacional-2050.aspx. | |
dc.relation | [19] R. de Best, Global market share HVAC systems by product type 2017, Statista, 2021. | |
dc.relation | [20] M.R. Brambley, D. Hansen, P. Haves, D.R. Holmberg, S.C. McDonald, K.W. Roth, P. Torcellini, Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways, Pacific Northwest Natl. Lab., 2005, p. 162, doi: 10.1016/j.niox.2010.08.001. | |
dc.relation | [21] Z. Afroz, G. Higgins, T. Urmee, G. Shafiullah
Technological advancement of energy management facility of institutional buildings: a case study
Energy Proc., 142 (2017), pp. 3088-3095, 10.1016/j.egypro.2017.12.449 | |
dc.relation | [22] ASHRAE, ASHRAE handbook. HVAC systems and equipment., I-P Editio, American Society of Heating, Refrigeration and Air-conditioning Engineers, Inc., Atlanta, 2008. | |
dc.relation | [23] M. Shahrestani, R. Yao, G.K. Cook
A fuzzy multiple attribute decision making tool for HVAC&R systems selection with considering the future probabilistic climate changes and electricity decarbonisation plans in the UK
Energ. Build. (2018), 10.1016/j.enbuild.2017.10.089 | |
dc.relation | [24] M. Shahrestani, R. Yao, G.K. Cook
Decision making for HVAC&R system selection for a typical office building in the UK
ASHRAE Trans., 118 (2012), pp. 222-229 | |
dc.relation | [25] A. Avgelis, A.M. Papadopoulos
Application of multicriteria analysis in designing HVAC systems
Energ. Build., 41 (2009), pp. 774-780, 10.1016/j.enbuild.2009.02.011 | |
dc.relation | [26] J. Wang, M.E. Be, Y. Jing, C. Zhang
Fuzzy multi-criteria evaluation model of HVAC schemes in optimal combination weighting method
Build. Serv. Eng. Res. Technol., 30 (2009), pp. 287-304, 10.1177/0143624409338502 | |
dc.relation | [27] M. Shahrestani, R. Yao, G.K. Cook
Characterising the energy performance of centralised HVAC&R systems in the UK
Energ. Build., 62 (2013), pp. 239-247, 10.1016/j.enbuild.2013.03.016
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [28] P. Arroyo, I.D. Tommelein, G. Ballard, P. Rumsey
Choosing by advantages: a case study for selecting an HVAC system for a net zero energy museum
Energ. Build., 111 (2016), pp. 26-36, 10.1016/j.enbuild.2015.10.023 | |
dc.relation | [29] Y.J. Kim, K.U. Ahn, C.S. Park Decision making of HVAC system using Bayesian Markov chain Monte Carlo method
Energ. Build., 72 (2014), pp. 112-121, 10.1016/j.enbuild.2013.12.039
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [30] M. Balbis-Morejón, J.J. Cabello-Eras, J.M. Rey-Hernández, F.J. Rey-Martínez
Global Air Conditioning Performance Indicator (ACPI) for buildings, in tropical climate
Build. Environ., 203 (2021), Article 108071, 10.1016/j.buildenv.2021.108071
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [31] Shanghai Haicheng, Shanghai Haicheng. Site office container, 2020), p. 1, http://www.shs-house.com/site-officecontainer-15264373440020726.html#.
Google Scholar | |
dc.relation | [32] Design Builder Software Ltd., 2018, https://www.designbuilder-lat.com/. | |
dc.relation | [33] M. Balbis-Morejón, J.M. Rey-Hernández, C. Amaris-Castilla, E. Velasco-Gómez, J.F. San José-Alonso, F.J. Rey-Martínez
Experimental study and analysis of thermal comfort in a university campus building in tropical climate
Sustainability, 12 (2020), p. 8886, 10.3390/su12218886
View article Google Scholar | |
dc.relation | [34] L. Pérez-Lombard, J. Ortiz, I.R. Maestre, J.F. Coronel
Constructing HVAC energy efficiency indicators
Energ. Build., 47 (2012), pp. 619-629, 10.1016/j.enbuild.2011.12.039
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [35] L. Pérez-lombard, J. Ortiz, J.F. Coronel, I.R. Maestre
A review of HVAC systems requirements in building energy regulations
Energ. Build., 43 (2011), pp. 255-268, 10.1016/j.enbuild.2010.10.025
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [36] M.M. Castilla, J.D. Álvarez, M. Berenguel, M. Pérez, F. Rodríguez, J.L. Guzmán
Técnicas de Control del Confort en Edificios
Rev. Iberoam. Automática e Informática Ind., 7 (2010), pp. 5-24, 10.4995/riai.2010.03.01
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [37] E.M. González Cruz, G. Claret, B. Morales, About thermal comfort: neutral temperatures in the humid tropic, Rev. Investig. Científica En Arquit. J. Sci. Res. (2009) 33–38, http://www.redalyc.org/pdf/948/94814777005.pdf.
Google Scholar | |
dc.relation | [38] Z. Lin, S. Deng
A study on the thermal comfort in sleeping environments in the subtropics-developing a thermal comfort model for sleeping environments
Build. Environ., 43 (2008), pp. 70-81, 10.1016/j.buildenv.2006.11.026
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | [39] C. Valderrama, A. Cohen, P. Lagiere, J.R. Puiggali
Análisis del comportamiento energético en un conjunto de edificios multifuncionales. Caso de estudio Campus Universitario
Rev. La Constr., 10 (2011), pp. 26-39
View article CrossRefView in ScopusGoogle Scholar | |
dc.relation | [40] J. Van Hoof, L. Schellen, V. Soebarto, J.K.W. Wong, J.K. Kazak
Ten questions concerning thermal comfort and ageing
Build. Environ., 120 (2017), pp. 123-133, 10.1016/j.buildenv.2017.05.008
View PDFView articleView in ScopusGoogle Scholar | |
dc.relation | 481 | |
dc.relation | 469 | |
dc.relation | 69 | |
dc.rights | © 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.sciencedirect.com/science/article/pii/S1110016823001138 | |
dc.subject | ACPI | |
dc.subject | Building energy efficiency | |
dc.subject | Energy simulation | |
dc.subject | Air-conditioning selection | |
dc.subject | Tropical climate | |
dc.title | Selection of HVAC technology for buildings in the tropical climate case study | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |