dc.creator | da Rosa Salles, Theodoro | |
dc.creator | Schnorr, Carlos Eduardo | |
dc.creator | da Silva Bruckmann, Franciele | |
dc.creator | Cassol Vicensi, Enzo | |
dc.creator | Rossato Viana, Altevir | |
dc.creator | Passaglia Schuch, André | |
dc.creator | da Silva Garcia, Wagner de Jesus | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | Harres de Oliveira, Artur | |
dc.creator | Roberto Mortari, Sergio | |
dc.creator | Bohn Rhoden, Cristiano Rodrigo | |
dc.date | 2023-09-07T16:33:09Z | |
dc.date | 2025-05-15 | |
dc.date | 2023-09-07T16:33:09Z | |
dc.date | 2023-06-15 | |
dc.date.accessioned | 2023-10-03T20:07:23Z | |
dc.date.available | 2023-10-03T20:07:23Z | |
dc.identifier | Theodoro da Rosa Salles, Carlos Schnorr, Franciele da Silva Bruckmann, Enzo Cassol Vicensi, Altevir Rossato Viana, André Passaglia Schuch, Wagner de Jesus da Silva Garcia, Luis F.O. Silva, Artur Harres de Oliveira, Sergio Roberto Mortari, Cristiano Rodrigo Bohn Rhoden, Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: Adsorption study and in vitro geno-cytotoxic assessment, Separation and Purification Technology, Volume 315, 2023, 123713, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2023.123713. | |
dc.identifier | 1383-5866 | |
dc.identifier | https://hdl.handle.net/11323/10455 | |
dc.identifier | 10.1016/j.seppur.2023.123713 | |
dc.identifier | 1873-3794 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174377 | |
dc.description | In this study, furosemide (FUR) adsorption was performed employing magnetic carbon nanotubes (CNT‧Fe3O4) with different amounts of incorporated magnetite. The CNT and magnetic CNTs were synthesized by chemical vapor deposition (CVD) and co-precipitation methods, respectively. The nanoadsorbents were characterized by FTIR, XRD, Raman, SEM, and VSM techniques. The adsorption experiments revealed that the best performance was obtained by CNT‧Fe3O4 1:10, showing values of 82.39% and 83.5 mg g−1 of removal percentage and maximum adsorption capacity at pH 2.0, due to the improvement in π-π interactions, and the presence of iron nanoparticles enhanced the adsorption, suggesting that cation-π interactions control the process. The sorption process exhibited high dependence on pH, adsorbent dosage, and initial concentration of adsorbate. Sips and Elovich models showed the best adjustment for experimental data, suggesting that the process occurs on a heterogeneous surface and with different energy adsorption sites, respectively. The thermodynamic parameters indicated a spontaneous and exothermic process. The outcome of in vitro cytotoxicity assays revealed that the adsorbent/drug complex, after adsorption, exhibited lower toxic effects than the free drug. On the other hand, the genotoxicity assay showed that only the Fe3O4 caused damage at the DNA level. Magnetic carbon nanotubes prove to be efficient in the removal of furosemide from the aqueous solution. Also, the complex after adsorption showed good biocompatibility, allowing a promising application in the biological area and stimulating future studies in drug repositioning. | |
dc.format | 12 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier Ltd. | |
dc.publisher | Netherlands | |
dc.relation | Separation and Purification Technology | |
dc.relation | [1] S.P. Maleti´c, J.M. Beljin, S.D. Ronˇcevi´c, M.G. Grgi´c, B.D. Dalmacija, State of the art
and future challenges for polycyclic aromatic hydrocarbons is sediments: sources,
fate, bioavailability and remediation techniques, J. Hazard. Mater. 365 (2019)
467–482, https://doi.org/10.1016/j.jhazmat.2018.11.020. | |
dc.relation | [2] I. Vasilachi, D. Asiminicesei, D. Fertu, M. Gavrilescu, Occurrence and fate of
emerging pollutants in water environment and options for their removal, Water
(Basel). 13 (2021) 181, https://doi.org/10.3390/w13020181. | |
dc.relation | [3] C. Laurenc´e, M. Rivard, T. Martens, C. Morin, D. Buisson, S. Bourcier, M. Sablier,
M.A. Oturan, Anticipating the fate and impact of organic environmental
contaminants: a new approach applied to the pharmaceutical furosemide,
Chemosphere. 113 (2014) 193–199, https://doi.org/10.1016/j.
chemosphere.2014.05.036. | |
dc.relation | [4] H. Olvera-Vargas, S. Leroy, M. Rivard, N. Oturan, M. Oturan, D. Buisson, Microbial
biotransformation of furosemide for environmental risk assessment: identification of metabolites and toxicological evaluation, Environ. Sci. Pollut. Res. Int. 23 (2016)
22691–22700, https://doi.org/10.1007/s11356-016-7398-2. | |
dc.relation | [5] A. Mendoza, J. Acena, ˜ S. P´erez, M. Lopez ´ de Alda, D. Barcelo, ´ A. Gil, Y. Valcarcel, ´
Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case
study to analyse their presence and characterise their environmental risk and
hazard, Environ. Res. 140 (2015) 225–241, https://doi.org/10.1016/j.
envres.2015.04.003. | |
dc.relation | [6] Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M.A. Oturan, Efficient photocatalytic
degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged
clinoptilolite nanorods, Sep. Purif. Technol. 242 (2020), 116800, https://doi.org/
10.1016/j.seppur.2020.116800. | |
dc.relation | [7] A. Alayli, H. Nadaroglu, E. Turgut, Nanobiocatalyst beds with Fenton process for
removal of methylene blue, Appl. Water Sci. 11 (2021), https://doi.org/10.1007/
s13201-021-01367-8. | |
dc.relation | [8] F.T. Alshorifi, A.A. Alswat, R.S. Salama, Gold-selenide quantum dots supported
onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B,
Heliyon. 8 (2022) e09652. | |
dc.relation | [9] O. Nemati Sani, A.A. Navaei fezabady, M. Yazdani, M. Taghavi, Catalytic ozonation
of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters,
J. Water Proc. Eng. 32 (2019), 100894, https://doi.org/10.1016/j.
jwpe.2019.100894. | |
dc.relation | [10] S. Erdem, M. Oztekin, ¨ Y. Sag ˘ Açıkel, Investigation of tetracycline removal from
aqueous solutions using halloysite/chitosan nanocomposites and halloysite
nanotubes/alginate hydrogel beads, Environ. Nanotechnol. Monit. Manag. 16
(2021), 100576, https://doi.org/10.1016/j.enmm.2021.100576. | |
dc.relation | [11] M.L.G. Vieira, C.P. Pinheiro, K.A. Silva, T.R.S. Cadaval Jr, G.L. Dotto, L.A.A. Pinto,
Development of adsorbent rigid structure based on Spirulina sp./chitosan
bioblends coatings for dye adsorption in fixed bed column, Environ. Sci. Pollut.
Res. Int. 29 (2022) 79466–79477, https://doi.org/10.1007/s11356-022-21372-x. | |
dc.relation | [12] C.R.B. Rhoden, F. da S. Bruckmann, T. da R. Salles, C.G. Kaufmann Junior, S.
R. Mortari, Study from the influence of magnetite onto removal of
hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide,
J. Water Proc. Eng. 43 (2021), 102262, https://doi.org/10.1016/j.
jwpe.2021.102262. | |
dc.relation | [13] T. da R. Salles, H. de B. Rodrigues, F. da S. Bruckmann, L.C.S. Alves, S.R. Mortari,
C.R.B. Rhoden, Graphene oxide optimization synthesis for application on
laboratory of Universidade Franciscana, Disciplinarum Scientia - Ciˆencias Naturais
e Tecnologicas. ´ 21 (2020) 15–26, https://doi.org/10.37779/nt.v21i3.3632. | |
dc.relation | [14] F.B. Nunes, F. da Silva Bruckmann, T. da Rosa Salles, C.R.B. Rhoden, Study of
phenobarbital removal from the aqueous solutions employing magnetitefunctionalized chitosan, Environ. Sci. Pollut. Res. Int. 30 (2023) 12658–12671,
https://doi.org/10.1007/s11356-022-23075-9. | |
dc.relation | [15] Z. Wang, W. Xu, F. Jie, Z. Zhao, K. Zhou, H. Liu, The selective adsorption
performance and mechanism of multiwall magnetic carbon nanotubes for heavy
metals in wastewater, Sci. Rep. 11 (2021) 16878, https://doi.org/10.1038/
s41598-021-96465-7. | |
dc.relation | [16] C.G. Kaufmann Junior, R.Y.S. Zampiva, J. Venturini, L.M. dos Santos, C. Florence,
E. da Silva Fernandes, S.R. Mortari, C.P. Bergmann, C.S. ten Caten, A.K. Alves, CNT
sponges with outstanding absorption capacity and electrical properties: Impact of
the CVD parameters on the product structure, Ceram. Int. 45 (2019) 13761–13771,
https://doi.org/10.1016/j.ceramint.2019.04.072. | |
dc.relation | [17] J.C. Diel, D.S.P. Franco, A.V. Igansi, T.R.S. Cadaval Jr, H.A. Pereira, I.D.S. Nunes,
C.W. Basso, M. do C.M. Alves, J. Morais, D. Pinto, G.L. Dotto, Green synthesis of
carbon nanotubes impregnated with metallic nanoparticles: Characterization and
application in glyphosate adsorption, Chemosphere. 283 (2021), 131193, https://
doi.org/10.1016/j.chemosphere.2021.131193. | |
dc.relation | [18] D. Balarak, F. Mostafapour, E. Bazrafshan, T.A. Saleh, Studies on the adsorption of
amoxicillin on multi-wall carbon nanotubes, Water Sci. Technol. 75 (2017)
1599–1606, https://doi.org/10.2166/wst.2017.025. | |
dc.relation | [19] F.S. Bruckmann, C. Schnorr, L.R. Oviedo, S. Knani, L.F.O. Silva, W.L. Silva, G.
L. Dotto, C.R. Bohn Rhoden, Adsorption and photocatalytic degradation of
pesticides into nanocomposites: A review, Molecules. 27 (2022), https://doi.org/
10.3390/molecules27196261. | |
dc.relation | [20] F. da S. Bruckmann, T. Zuchetto, C.M. Ledur, C.L. dos Santos, W.L. da Silva,
S. Binotto Fagan, I. Zanella da Silva, C.R. Bohn Rhoden, Methylphenidate
adsorption onto graphene derivatives: theory and experiment, New J Chem. 46
(2022) 4283–4291, https://doi.org/10.1039/d1nj03916d. | |
dc.relation | [21] G. William Kajjumba, S. Emik, A. Ongen, ¨ H. Kurtulus Ozcan, ¨ S. Aydın, Modelling of
adsorption kinetic processes—errors, theory and application, in: Advanced
Sorption Process Applications, IntechOpen, 2019. | |
dc.relation | [22] F. da S. Bruckmann, A. Rossato Viana, M.Z. Tonel, S.B. Fagan, W.J. da S. Garcia, A.
H. de Oliveira, L.S. Dorneles, S. Roberto Mortari, W.L. da Silva, I.Z. da Silva, C.R.
B. Rhoden, Influence of magnetite incorporation into chitosan on the adsorption of
the methotrexate and in vitro cytotoxicity, Environ. Sci. Pollut. Res. Int. 29 (2022)
70413–70434, https://doi.org/10.1007/s11356-022-20786-x. | |
dc.relation | [23] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic
parameters of liquid-phase adsorption process calculated from different
equilibrium constants related to adsorption isotherms: A comparison study,
J. Environ. Chem. Eng. 9 (2021), 106674, https://doi.org/10.1016/j.
jece.2021.106674. | |
dc.relation | [24] A. Rossato Viana, B. Godoy Noro, D. Santos, K. Wolf, Y. Sudatti Das Neves, R.
N. Moresco, A.F. Ourique, E.M. Moraes Flores, C.R.B. Rhoden, L. Maria Fontanari
Krause, B. Stefanello Vizzotto, Detection of new phytochemical compounds from
Vassobia breviflora (Sendtn.) Hunz: antioxidant, cytotoxic, and antibacterial
activity of the hexane extract, J. Toxicol. Environ. Health Part A. 86 (2023) 51–68,
https://doi.org/10.1080/15287394.2022.2156956. | |
dc.relation | [25] A. Rossato Viana, N. Bianchin Bottari, D. Santos, M. Bolson Serafin, B. Garlet
Rossato, R.N. Moresco, K. Wolf, A. Ourique, R. Horner, ¨ E.M. ´ de Moraes Flores, M.
R. Chitolina Schetinger, B. Stefanello Vizzotto L., Maria Fontanari Krause, Insights
of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria
and cancer cells: from biological to therapeutic, J. Toxicol. Environ. Health Part A.
85 (2022) 972–987, https://doi.org/10.1080/15287394.2022.2130844. | |
dc.relation | [26] M. Carrett-Dias, L.K. Almeida, J.L. Pereira, D.V. Almeida, D.M.V.B. Filgueira, L.
F. Marins, A.P. de S. Votto, G.S. Trindade, Cell differentiation and the multiple
drug resistance phenotype in human erythroleukemic cells, Leuk. Res. 42 (2016)
13–20, https://doi.org/10.1016/j.leukres.2016.01.008. | |
dc.relation | [27] E.C. ´ de Oliveira, F. da Silva Bruckmann, P.F. Schopf, A.R. Viana, S.R. Mortari, M.
R. Sagrillo, N.J.S. de Vasconcellos, L. da Silva Fernandes, C.R. Bohn Rhoden In,
vitro and in vivo safety profile assessment of graphene oxide decorated with
different concentrations of magnetite, J. Nanopart. Res. 24 (2022), https://doi.
org/10.1007/s11051-022-05529-w. | |
dc.relation | [28] M.S. Levy, P. Lotfian, R. O’Kennedy, M.Y. Lo-Yim, P.A. Shamlou, Quantitation of
supercoiled circular content in plasmid DNA solutions using a fluorescence-based
method, Nucleic Acids Res. 28 (2000) E57, https://doi.org/10.1093/nar/28.12.
e57. | |
dc.relation | [29] F. da Silva Bruckmann, A.R. Viana, L.Q.S. Lopes, R.C.V. Santos, E.I. Muller, S.
R. Mortari, C.R.B. Rhoden, Synthesis, characterization, and biological activity
evaluation of magnetite-functionalized eugenol, J. Inorg. Organomet. Polym.
Mater. 32 (2022) 1459–1472, https://doi.org/10.1007/s10904-021-02207-7. | |
dc.relation | [30] B.P. Sahu, M.K. Das, Nanoprecipitation with sonication for enhancement of oral
bioavailability of furosemide, Acta Pol. Pharm. 71 (2014) 129–137. | |
dc.relation | [31] M. Gallignani, R.A. Rondon, ´ J.F. Ovalles, M.R. Brunetto, Transmission FTIR
derivative spectroscopy for estimation of furosemide in raw material and tablet
dosage form, Acta Pharm. Sin. B. 4 (2014) 376–383, https://doi.org/10.1016/j.
apsb.2014.06.013. | |
dc.relation | [32] A. Harres, M. Mikhov, V. Skumryev, A.M.H. de Andrade, J.E. Schmidt, J. Geshev,
Criteria for saturated magnetization loop, J. Magn. Magn. Mater. 402 (2016)
76–82, https://doi.org/10.1016/j.jmmm.2015.11.046. | |
dc.relation | [33] D.L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small. 1
(2005) 482–501, https://doi.org/10.1002/smll.200500006. | |
dc.relation | [34] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation
between particle size/domain structure and magnetic properties of highly
crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 9894, https://doi.org/
10.1038/s41598-017-09897-5. | |
dc.relation | [35] J. Sung Lee, J. Myung Cha, H. Young Yoon, J.-K. Lee, Y. Keun Kim, Magnetic multigranule nanoclusters: A model system that exhibits universal size effect of magnetic
coercivity, Sci. Rep. 5 (2015) 12135, https://doi.org/10.1038/srep12135. | |
dc.relation | [36] E.P. Wohlfarth, The effect of particle interaction on the coercive force of
ferromagnetic micropowders, Proc. R. Soc. Lond. 232 (1955) 208–227, https://doi.
org/10.1098/rspa.1955.0212. | |
dc.relation | [37] J.J. Lu, M.-T. Lin, C.C. Kuo, H.L. Huang, Hysteretic behavior of magnetic particles
with dipole interaction, J. Appl. Phys. 85 (1999) 5558–5560, https://doi.org/
10.1063/1.369894. | |
dc.relation | [38] M. El-Hilo, I. Bsoul, Interaction effects on the coercivity and fluctuation field in
granular powder magnetic systems, Physica B Condens. Matter. 389 (2007)
311–316, https://doi.org/10.1016/j.physb.2006.07.003. | |
dc.relation | [39] B. Aslibeiki, P. Kameli, H. Salamati, The effect of dipole-dipole interactions on
coercivity, anisotropy constant, and blocking temperature of MnFe2O4
nanoparticles, J. Appl. Phys. 119 (2016), 063901, https://doi.org/10.1063/
1.4941388. | |
dc.relation | [40] M. Song, M. Li, Adsorption and regeneration characteristics of phosphorus from
sludge dewatering filtrate by magnetic anion exchange resin, Environ. Sci. Pollut.
Res. Int. 26 (2019) 34233–34247, https://doi.org/10.1007/s11356-018-4049-9. | |
dc.relation | [41] Y. Sun, S. Yang, G. Sheng, Z. Guo, X. Wang, The removal of U(VI) from aqueous
solution by oxidized multiwalled carbon nanotubes, J. Environ. Radioact. 105
(2012) 40–47, https://doi.org/10.1016/j.jenvrad.2011.10.009. | |
dc.relation | [42] J. Liu, D. Xu, P. Chen, Q. Yu, H. Qiu, X. Xiong, Solvothermal synthesis of porous
superparamagnetic RGO@Fe3O4 nanocomposites for microwave absorption,
J. Mater. Sci.: Mater. Electron. 30 (2019) 17106–17118, https://doi.org/10.1007/
s10854-019-02057-7. | |
dc.relation | [43] F. Coa, ˆ M. Strauss, Z. Clemente, L.L. Rodrigues Neto, J.R. Lopes, R.S. Alencar, A.
G. Souza Filho, O.L. Alves, V.L.S.S. Castro, E. Barbieri, D.S.T. Martinez, Coating
carbon nanotubes with humic acid using an eco-friendly mechanochemical
method: Application for Cu(II) ions removal from water and aquatic ecotoxicity,
Sci. Total Environ. 607–608 (2017) 1479–1486, https://doi.org/10.1016/j.
scitotenv.2017.07.045. | |
dc.relation | [44] Y. Liu, N. Wu, Z. Wang, H. Cao, J. Liu, Fe3O4 nanoparticles encapsulated in multiwalled carbon nanotubes possess superior lithium storage capability, New J Chem.
41 (2017) 6241–6250, https://doi.org/10.1039/c7nj00230k. | |
dc.relation | [45] K. Zhang, Q. Zhang, X. Gao, X. Chen, Y. Wang, W. Li, J. Wu, Effect of absorbers’
composition on the microwave absorbing performance of hollow Fe3O4
nanoparticles decorated CNTs/graphene/C composites, J. Alloys Compd. 748
(2018) 706–716, https://doi.org/10.1016/j.jallcom.2018.03.202. | |
dc.relation | [46] H. Sadegh, K. Zare, B. Maazinejad, R. Shahryari-ghoshekandi, I. Tyagi, S. Agarwal,
V.K. Gupta, Synthesis of MWCNT-COOH-Cysteamine composite and its application
for dye removal, J. Mol. Liq. 215 (2016) 221–228, https://doi.org/10.1016/j.
molliq.2015.12.042. | |
dc.relation | [47] C. Aparecida Matias, P.B. Vilela, V.A. Becegato, A.T. Paulino, Adsorption kinetic,
isotherm and thermodynamic of 2,4-dichlorophenoxyacetic acid herbicide in novel
alternative natural adsorbents, Water Air Soil Pollut. 230 (2019), https://doi.org/
10.1007/s11270-019-4324-5. | |
dc.relation | [48] K. Ezeh, I.C. Ogbu, K.G. Akpomie, N.C. Ojukwu, J.C. Ibe. Utilizing the Sorption
Capacity of Local Nigerian Sawdust for Attenuation of Heavy Metals from Solution:
Isotherm, Kinetic, and Thermodynamic Investigations, n.d. | |
dc.relation | [49] A. Ebrahimian Pirbazari, E. Saberikhah, M. Badrouh, M.S. Emami, Alkali treated
Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from
aqueous solution, Water Resour, Ind. 6 (2014) 64–80, https://doi.org/10.1016/j.
wri.2014.07.003. | |
dc.relation | [50] G.Y. Abate, A.N. Alene, A.T. Habte, D.M. Getahun, Adsorptive removal of
malachite green dye from aqueous solution onto activated carbon of Catha edulis
stem as a low cost bio-adsorbent, Environ. Syst. Res. 9 (2020), https://doi.org/
10.1186/s40068-020-00191-4. | |
dc.relation | [51] K. Tak´
acs-Nov´
ak, V. Szoke, ˝ G. Volgyi, ¨ P. Horvath, ´ R. Ambrus, P. Szabo-R ´ ´ev´esz,
Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine
and niflumic acid, J. Pharm. Biomed. Anal. 83 (2013) 279–285, https://doi.org/
10.1016/j.jpba.2013.05.011. | |
dc.relation | [52] L. Ji, W. Chen, J. Bi, S. Zheng, Z. Xu, D. Zhu, P.J. Alvarez, Adsorption of
tetracycline on single-walled and multi-walled carbon nanotubes as affected by
aqueous solution chemistry, Environ. Toxicol. Chem. 29 (2010) 2713–2719,
https://doi.org/10.1002/etc.350. | |
dc.relation | [53] E.M. P´erez, N. Martín, Π-π interactions in carbon nanostructures, Chem. Soc. Rev.
44 (2015) 6425–6433, https://doi.org/10.1039/c5cs00578g. | |
dc.relation | [54] P. Karthik, R. Vinoth, P. Zhang, W. Choi, E. Balaraman, B. Neppolian, Π-π
interaction between metal-organic framework and reduced graphene oxide for
visible-light photocatalytic H2 production, ACS Appl. Energy Mater. 1 (2018)
1913–1923, https://doi.org/10.1021/acsaem.7b00245. | |
dc.relation | [55] Y. Yang, F. Sun, J. Li, J. Chen, M. Tang, The effects of different factors on the
removal mechanism of Pb(ii) by biochar-supported carbon nanotube composites,
RSC Adv. 10 (2020) 5988–5995, https://doi.org/10.1039/c9ra09470a. | |
dc.relation | [56] S. Lin, Y. Zhao, Y.-S. Yun, Highly effective removal of nonsteroidal antiinflammatory pharmaceuticals from water by Zr(IV)-based metal-organic
framework: Adsorption performance and mechanisms, ACS Appl. Mater. Interfaces.
10 (2018) 28076–28085, https://doi.org/10.1021/acsami.8b08596. | |
dc.relation | [57] N. Tzabar, H.J.M. ter Brake, Adsorption isotherms and Sips models of nitrogen,
methane, ethane, and propane on commercial activated carbons and
polyvinylidene chloride, Adsorption (Boston). 22 (2016) 901–914, https://doi.org/
10.1007/s10450-016-9794-9. | |
dc.relation | [58] E.D.V. Duarte, M.G. Oliveira, M.P. Spaolonzi, H.P.S. Costa, T.L. da Silva, M.G.C. da
Silva, M.G.A. Vieira, Adsorption of pharmaceutical products from aqueous
solutions on functionalized carbon nanotubes by conventional and green methods:
A critical review, J. Clean. Prod. 372 (2022), 133743, https://doi.org/10.1016/j.
jclepro.2022.133743. | |
dc.relation | [59] E. Ahangaran, H. Aghaie, R. Fazaeli, Study of amoxicillin adsorption on the
silanized multiwalled carbon nanotubes: Isotherms, kinetics, and thermodynamics
study, Russ. J. Phys. Chem. 94 (2020) 2818–2828, https://doi.org/10.1134/
s0036024420130038. | |
dc.relation | [60] H. Zhang, P. Wang, L. Shi, J. Xue, A. Liang, D. Zhang, Opposite impacts of chemical
oxidation for ofloxacin adsorption on activated carbon and carbon nanotubes, Sci.
Total Environ. 771 (2021), 145455, https://doi.org/10.1016/j.
scitotenv.2021.145455. | |
dc.relation | [61] A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi,
G. Hassani, M. Shirmardi, Removal of tetracycline antibiotic from contaminated
water media by multi-walled carbon nanotubes: operational variables, kinetics,
and equilibrium studies, Water Sci. Technol. 74 (2016) 1202–1216, https://doi.
org/10.2166/wst.2016.301. | |
dc.relation | [62] J. Yao, Y. Deng, S. Pan, R. Korna, J. Wen, N. Yuan, K. Wang, H. Li, Y. Yang, The
difference in the adsorption mechanisms of magnetic ferrites modified carbon
nanotubes, J. Hazard. Mater. 415 (2021), 125551, https://doi.org/10.1016/j.
jhazmat.2021.125551. | |
dc.relation | [63] K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal
of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng. 74 (2017)
25–48, https://doi.org/10.1016/j.jtice.2017.01.024. | |
dc.relation | [64] F. da Silva Bruckmann, C. Mafra Ledur, I. Zanella da Silva, G. Luiz Dotto,
C. Rodrigo Bohn Rhoden, A DFT theoretical and experimental study about
tetracycline adsorption onto magnetic graphene oxide, J. Mol. Liq. 353 (2022),
118837, https://doi.org/10.1016/j.molliq.2022.118837. | |
dc.relation | [65] F. da Silva Bruckmann, C.E. Schnorr, T. da Rosa Salles, F.B. Nunes, L. Baumann, E.
I. Müller, L.F.O. Silva, G.L. Dotto, C.R. Bohn Rhoden, Highly efficient adsorption of
tetracycline using chitosan-based magnetic adsorbent, Polymers (Basel) 14 (2022)
4854, https://doi.org/10.3390/polym14224854. | |
dc.relation | [66] M.T. Amin, A.A. Alazba, M. Shafiq, Successful application of eucalyptus
camdulensis biochar in the batch adsorption of crystal Violet and methylene blue
dyes from aqueous solution, Sustainability. 13 (2021) 3600, https://doi.org/
10.3390/su13073600. | |
dc.relation | [67] C. Li, Y. Yan, Q. Zhang, Z. Zhang, L. Huang, J. Zhang, Y. Xiong, S. Tan, Adsorption
of Cd2+ and Ni2+ from aqueous single-metal solutions on graphene oxidechitosan-poly(vinyl alcohol) hydrogels, Langmuir. 35 (2019) 4481–4490, https://
doi.org/10.1021/acs.langmuir.8b04189. | |
dc.relation | [68] T. da Rosa Salles, F. da Silva Bruckamann, A.R. Viana, L.M.F. Krause, S.R. Mortari,
C.R.B. Rhoden, Magnetic nanocrystalline cellulose: Azithromycin adsorption and in
vitro biological activity against melanoma cells, J. Polym. Environ. 30 (2022)
2695–2713, https://doi.org/10.1007/s10924-022-02388-3. | |
dc.relation | [69] S. Raghav, D. Kumar, Adsorption equilibrium, kinetics, and thermodynamic studies
of fluoride adsorbed by tetrametallic oxide adsorbent, J. Chem. Eng. Data. 63
(2018) 1682–1697, https://doi.org/10.1021/acs.jced.8b00024. | |
dc.relation | [70] N.G. Rincon-Silva, ´ J.C. Moreno-Pirajan, ´ L.G. Giraldo, Thermodynamic study of
adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon
obtained from eucalyptus seed, J. Chem. 2015 (2015) 1–12, https://doi.org/
10.1155/2015/569403. | |
dc.relation | [71] N.P. Higgins, A.V. Vologodskii, Topological behavior of Plasmid DNA, Microbiol.
Spectr. 3 (2015), https://doi.org/10.1128/microbiolspec.PLAS-0036-2014. | |
dc.relation | [72] B. Murugesan, J. Sonamuthu, S. Samayanan, S. Arumugam, S. Mahalingam, Highly
biological active antibiofilm, anticancer and osteoblast adhesion efficacy from
MWCNT/PPy/Pd nanocomposite, Appl. Surf. Sci. 434 (2018) 400–411, https://doi.
org/10.1016/j.apsusc.2017.10.142. | |
dc.relation | [73] S. Alarifi, D. Ali, Mechanisms of multi-walled carbon nanotubes-induced oxidative
stress and genotoxicity in mouse fibroblast cells, Int. J. Toxicol. 34 (2015)
258–265, https://doi.org/10.1177/1091581815584799. | |
dc.relation | [74] J.S. Kim, K.S. Song, I.J. Yu, Multiwall carbon nanotube-induced DNA damage and
cytotoxicity in male human peripheral blood lymphocytes, Int. J. Toxicol. 35
(2016) 27–37, https://doi.org/10.1177/1091581815598749. | |
dc.relation | [75] A. Kavosi, S. Hosseini Ghale Noei, S. Madani, S. Khalighfard, S. Khodayari,
H. Khodayari, M. Mirzaei, M.R. Kalhori, M. Yavarian, A.M. Alizadeh, M. Falahati,
The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on
mice breast cancer, Sci. Rep. 8 (2018), https://doi.org/10.1038/s41598-018-
26790-x. | |
dc.relation | [76] M.L. Di Giorgio, S. Di Bucchianico, A.M. Ragnelli, P. Aimola, S. Santucci, A. Poma,
Effects of single and multi walled carbon nanotubes on macrophages: cyto and
genotoxicity and electron microscopy, Mutat. Res. 722 (2011) 20–31, https://doi.
org/10.1016/j.mrgentox.2011.02.008. | |
dc.relation | 12 | |
dc.relation | 1 | |
dc.relation | 315 | |
dc.rights | © 2023 Elsevier B.V. All rights reserved. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S1383586623006214 | |
dc.subject | Emerging Pollutants | |
dc.subject | Carbon nanomaterials | |
dc.subject | In vitro toxicity | |
dc.subject | Magnetite | |
dc.title | Effective diuretic drug uptake employing magnetic carbon nanotubes derivatives: adsorption study and in vitro geno-cytotoxic assessment | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |