dc.creator | Pereira de Oliveira, Miguel | |
dc.creator | Schnorr, Carlos Eduardo | |
dc.creator | da Rosa Salles, Theodoro | |
dc.creator | da Silva Bruckmann, Franciele | |
dc.creator | Baumann, Luiza | |
dc.creator | Irineu Muller, Edson | |
dc.creator | da Silva Garcia, Wagner Jesus | |
dc.creator | Harres, Artur | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | Bohn Rhoden, Cristiano Rodrigo | |
dc.date | 2023-08-08T19:01:43Z | |
dc.date | 2023-08-08T19:01:43Z | |
dc.date | 2023-01-10 | |
dc.date.accessioned | 2023-10-03T20:07:05Z | |
dc.date.available | 2023-10-03T20:07:05Z | |
dc.identifier | de Oliveira, M.P.; Schnorr, C.; da Rosa Salles, T.; da Silva Bruckmann, F.; Baumann, L.; Muller, E.I.; da Silva Garcia, W.J.; de Oliveira, A.H.; Silva, L.F.O.; Rhoden, C.R.B. Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water 2023, 15, 293. https://doi.org/ 10.3390/w15020293 | |
dc.identifier | https://hdl.handle.net/11323/10364 | |
dc.identifier | 10.3390/w15020293 | |
dc.identifier | 2073-4441 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174341 | |
dc.description | This paper reports a high efficiency uptake of captopril (CPT), employing magnetic graphene oxide (MGO) as the adsorbent. The graphene oxide (GO) was produced through an oxidation and exfoliation method, and the magnetization technique by the co-precipitation method. The nanomaterials were characterized by FTIR, XRD, SEM, Raman, and VSM analysis. The optimal condition was reached by employing GO·Fe3O4 at pH 3.0 (50 mg of adsorbent and 50 mg L−1 of CPT), presenting values of removal percentage and maximum adsorption capacity of 99.43% and 100.41 mg g−1, respectively. The CPT adsorption was dependent on adsorbent dosage, initial concentration of adsorbate, pH, and ionic strength. Sips and Elovich models showed the best adjustment for experimental data, suggesting that adsorption occurs in a heterogeneous surface. Thermodynamic parameters reveal a favorable, exothermic, involving a chemisorption process. The magnetic carbon nanomaterial exhibited a high efficiency after five adsorption/desorption cycles. Finally, the GO·Fe3O4 showed an excellent performance in CPT removal, allowing future application in waste management. | |
dc.format | 19 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
dc.publisher | Switzerland | |
dc.relation | Water | |
dc.relation | 1. Duarte, E.D.V.; Oliveira, M.G.; Spaolonzi, M.P.; Costa, H.P.S.; da Silva, T.L.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Pharmaceutical Products from Aqueous Solutions on Functionalized Carbon Nanotubes by Conventional and Green Methods: A Critical Review. J. Clean. Prod. 2022, 372, 133743. [CrossRef] | |
dc.relation | 2. Ramos, S.; Homem, V.; Alves, A.; Santos, L. A Review of Organic UV-Filters in Wastewater Treatment Plants. Environ. Int. 2016,
86, 24–44. [CrossRef] [PubMed] | |
dc.relation | 3. Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging Pollutants in the Environment: Present and Future
Challenges in Biomonitoring, Ecological Risks and Bioremediation. N. Biotechnol. 2015, 32, 147–156. [CrossRef] [PubMed] | |
dc.relation | 4. Wang, L.; Chen, G.; Shu, H.; Cui, X.; Luo, Z.; Chang, C.; Zeng, A.; Zhang, J.; Fu, Q. Facile Covalent Preparation of Carbon
Nanotubes / Amine-Functionalized Fe3O4 Nanocomposites for Selective Extraction of Estradiol in Pharmaceutical Industry
Wastewater. J. Chromatogr. A 2021, 1638, 461889. [CrossRef] | |
dc.relation | 5. Xi, L.; Zhang, X.; Chen, Y.; Peng, J.; Liu, M.; Huo, D.; Li, G.; He, H. A Fluorescence Turn-on Strategy to Achieve Detection of
Captopril Based on Ag Nanoclusters. Chem. Phys. Lett. 2022, 807, 140085. [CrossRef] | |
dc.relation | 6. Qu, F.; Zhu, G.; Huang, S.; Li, S.; Qiu, S. Effective controlled release of captopril by silylation of mesoporous MCM-41.
ChemPhysChem 2006, 7, 400–406. [CrossRef] | |
dc.relation | 7. Mahmoud, W.M.M.; Kümmerer, K. Captopril and Its Dimer Captopril Disulfide: Photodegradation, Aerobic Biodegradation and
Identification of Transformation Products by HPLC-UV and LC-Ion Trap-MS(n). Chemosphere 2012, 88, 1170–1177. [CrossRef] | |
dc.relation | 8. Da Silva, D.M.; Carneiro da Cunha Areias, M. Voltammetric Detection of Captopril in a Commercial Drug Using a Gold-Copper
Metal-organic Framework Nanocomposite Modified Electrode. Electroanalysis 2021, 33, 1255–1263. [CrossRef] | |
dc.relation | 9. Cunha, M.R.; Lima, E.C.; Lima, D.R.; Da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sheir, F.; Dos Reis, G.S.; Larsson, S.H. Removal
of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia
catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [CrossRef] | |
dc.relation | 10. Alayli, A.; Nadaroglu, H.; Turgut, E. Nanobiocatalyst beds with Fenton process for removal of methylene blue. Appl. Water Sci.
2021, 11, 32. [CrossRef] | |
dc.relation | 11. Oviedo, L.R.; Muraro, P.C.L.; Pavoski, G.; Espinosa, D.C.R.; Ruiz, Y.P.M.; Galembeck, A.; Rhoden, C.R.B.; da Silva, W.L. Synthesis
and Characterization of Nanozeolite from (Agro)Industrial Waste for Application in Heterogeneous Photocatalysis. Environ. Sci.
Pollut. Res. Int. 2022, 29, 3794–3807. [CrossRef] [PubMed] | |
dc.relation | 12. Sani, O.N.; Yazdani, M.; Taghavi, M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real
wastewaters. J. Water Process Eng. 2019, 32, 100894. [CrossRef] | |
dc.relation | 13. Erdem, S.; Öztekin, M.; Açıkel, Y.S. Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan
nano-composites and halloysite nanotubes/alginate hydrogel beads. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100576. | |
dc.relation | 14. Ci ˘gero ˘glu, Z.; Kazan-Kaya, E.S.; El Messaoudi, N.; Fernine, Y.; Américo-Pinheiro, J.H.P.; Jada, A. Remediation of tetracycline
from aqueous solution through adsorption on g-C3N4
-ZnO-BaTiO3 nanocomposite: Optimization, modeling, and theoretical
calculation. J. Mol. Liq. 2022, 369, 120866. [CrossRef] | |
dc.relation | 15. Silveira, C.C.; Botega, C.S.; Rhoden, C.R.B.; Nunes, M.R.S.; Braga, A.L.; Lenardão, E.J. A Facile Synthesis of α-Phenylchalcogeno(S,
Se) α,β-Unsaturated Esters from Ethyl α-Bromo-α-Phenylchalcogeno Acetates. Synth. Commun. 1998, 28, 3371–3380. [CrossRef] | |
dc.relation | 16. Kasperiski, F.M.; Lima, E.C.; Umpierres, C.S.; Dos Reis, G.S.; Thue, P.S.; Lima, D.R.; Dias, S.L.P.; Saucier, C.; Da Costa, J.B.
Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from
aqueous solutions. J. Clean. Prod. 2018, 197, 919–929. [CrossRef] | |
dc.relation | 17. Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J.; et al.
Adsorption and Detoxification of Pharmaceutical Compounds from Wastewater Using Nanomaterials: A Review on Mechanism,
Kinetics, Valorization and Circular Economy. J. Environ. Manag. 2021, 300, 113569. [CrossRef] | |
dc.relation | 18. El Messaoudi, N.; El Mouden, A.; Fernine, Y.; El Khomri, M.; Bouich, A.; Faska, N.; Ci ˘gero ˘glu, Z.; Américo-Pinheiro, J.H.P.;
Jada, A.; Lacherai, A. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic
adsorption: Characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 2022, 29, 1–18.
[CrossRef] | |
dc.relation | 19. Singh, S.; Anil, A.G.; Khasnabis, S.; Kumar, V.; Nath, B.; Adiga, V.; Kumar Naik, T.S.S.; Subramanian, S.; Kumar, V.; Singh,
J.; et al. Sustainable Removal of Cr(VI) Using Graphene Oxide-Zinc Oxide Nanohybrid: Adsorption Kinetics, Isotherms and
Thermodynamics. Environ. Res. 2022, 203, 111891. [CrossRef] | |
dc.relation | 20. Li, R.; Liu, Y.; Lan, G.; Qiu, H.; Xu, B.; Xu, Q.; Sun, N.; Zhang, L. Pb(II) Adsorption Characteristics of Magnetic GO-Hydroxyapatite
and the Contribution of GO to Enhance Its Acid Resistance. J. Environ. Chem. Eng. 2021, 9, 105310. [CrossRef] | |
dc.relation | 21. Rhoden, C.R.B.; Bruckmann, F.d.S.; Salles, T.d.R.; Kaufmann Junior, C.G.; Mortari, S.R. Study from the Influence of Magnetite
onto Removal of Hydrochlorothiazide from Aqueous Solutions Applying Magnetic Graphene Oxide. J. Water Proc. Eng. 2021,
43, 102262. [CrossRef] | |
dc.relation | 22. Salles, T.d.R.; Rodrigues, H.d.B.; Bruckmann, F.d.S.; Alves, L.C.S.; Mortari, S.R.; Rhoden, C.R.B. Graphene Oxide Optimization
Synthesis for Application on Laboratory of Universidade Franciscana. Discip. Sci. 2020, 21, 15–26. [CrossRef] | |
dc.relation | 23. Bruckmann, F.d.S.; Zuchetto, T.; Ledur, C.M.; dos Santos, C.L.; da Silva, W.L.; Binotto Fagan, S.; Zanella da Silva, I.; Bohn Rhoden,
C.R. Methylphenidate Adsorption onto Graphene Derivatives: Theory and Experiment. New J. Chem. 2022, 46, 4283–4291.
[CrossRef] | |
dc.relation | 24. Bruckmann, F.S.; Schnorr, C.; Oviedo, L.R.; Knani, S.; Silva, L.F.O.; Silva, W.L.; Dotto, G.L.; Bohn Rhoden, C.R. Adsorption and
Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, 27, 6261. [CrossRef] | |
dc.relation | 25. Tran, H.N.; You, S.-J.; Chao, H.-P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from
Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. [CrossRef] | |
dc.relation | 26. Da Rosa Salles, T.; Da Silva Bruckamann, F.; Viana, A.R.; Krause, L.M.F.; Mortari, S.R.; Rhoden, C.R.B. Magnetic nanocrystalline
cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells. J. Polym. Environ. 2022, 30, 2695–2713.
[CrossRef] | |
dc.relation | 27. Cimirro, F.N.; Lima, C.E.; Cunha, M.R.; Dias, S.L.; Thue, P.S.; Mazzocato, A.C.; Dotto, G.L.; Gelesky, M.A.; Pavan, F.A. Removal of
pharmaceutical compounds from aqueous solution by novel activated carbon synthesized from lovegrass (Poaceae). Environ. Sci.
Pollut. Res. 2020, 27, 21442–21454. [CrossRef] | |
dc.relation | 28. Kanta, U.-A.; Thongpool, V.; Sangkhun, W.; Wongyao, N.; Wootthikanokkhan, J. Preparations, Characterizations, and a Comparative Study on Photovoltaic Performance of Two Different Types of Graphene/TiO2 Nanocomposites Photoelectrodes. J.
Nanomater. 2017, 2017, 2758294. [CrossRef] | |
dc.relation | 29. Ossonon, B.D.; Bélanger, D. Synthesis and Characterization of Sulfophenyl-Functionalized Reduced Graphene Oxide Sheets. RSC
Adv. 2017, 7, 27224–27234. [CrossRef] | |
dc.relation | 30. Da Silva Bruckmann, F.; Viana, A.R.; Lopes, L.Q.S.; Santos, R.C.V.; Muller, E.I.; Mortari, S.R.; Rhoden, C.R.B. Synthesis,
Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J. Inorg. Organomet. Polym. Mater.
2022, 32, 1459–1472. [CrossRef] | |
dc.relation | 31. Bruckmann, F.d.S.; Pimentel, A.C.; Viana, A.R.; Salles, T.d.R.; Krause, L.M.F.; Mortari, S.R.; da Silva, I.Z.; Rhoden, C.R.B. Synthesis,
Characterization and Cytotoxicity Evaluation of Magnetic Nanosilica in L929 Cell Line. Discip. Sci. 2020, 21, 1–14. [CrossRef] | |
dc.relation | 32. Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The Systemic Effect of PEG-NGO-Induced Oxidative Stress
in Vivo in a Rodent Model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [CrossRef] [PubMed] | |
dc.relation | 33. Liu, J.; Xu, D.; Chen, P.; Yu, Q.; Qiu, H.; Xiong, X. Solvothermal Synthesis of Porous Superparamagnetic RGO@Fe3O4 Nanocomposites for Microwave Absorption. J. Mater. Sci. Mater. Electron. 2019, 30, 17106–17118. [CrossRef] | |
dc.relation | 34. Kellici, S.; Acord, J.; Ball, J.; Reehal, H.S.; Morgan, D.; Saha, B. A Single Rapid Route for the Synthesis of Reduced Graphene Oxide
with Antibacterial Activities. RSC Adv. 2014, 4, 14858–14861. [CrossRef] | |
dc.relation | 35. Côa, F.; Strauss, M.; Clemente, Z.; Rodrigues Neto, L.L.; Lopes, J.R.; Alencar, R.S.; Souza Filho, A.G.; Alves, O.L.; Castro, V.L.S.S.;
Barbieri, E.; et al. Coating Carbon Nanotubes with Humic Acid Using an Eco-Friendly Mechanochemical Method: Application
for Cu(II) Ions Removal from Water and Aquatic Ecotoxicity. Sci. Total Environ. 2017, 607–608, 1479–1486. [CrossRef] [PubMed] | |
dc.relation | 36. Zhang, K.; Zhang, Q.; Gao, X.; Chen, X.; Wang, Y.; Li, W.; Wu, J. Effect of absorbers’ composition on the microwave absorbing
performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites. J. Alloys Compd. 2018, 748, 70–716.
[CrossRef] | |
dc.relation | 37. Hatel, R.; Majdoub, S.E.; Bakour, A.; Khenfouch, M.; Baitoul, M. Graphene Oxide/Fe3O4 Nanorods Composite: Structural and
Raman Investigation. J. Phys. Conf. Ser. 2018, 1081, 012006. [CrossRef] | |
dc.relation | 38. Ghosh, B.; Sarma, S.; Pontsho, M.; Ray, S.C. Tuning of Magnetic Behaviour in Nitrogenated Graphene Oxide Functionalized with
Iron Oxide. Diam. Relat. Mater. 2018, 89, 35–42. [CrossRef] | |
dc.relation | 39. Da Silva Bruckmann, F.; Mafra Ledur, C.; Zanella da Silva, I.; Luiz Dotto, G.; Rodrigo Bohn Rhoden, C. A DFT Theoretical and
Experimental Study about Tetracycline Adsorption onto Magnetic Graphene Oxide. J. Mol. Liq. 2022, 353, 118837. [CrossRef] | |
dc.relation | 40. Cheng, Y.; Yang, S.; Tao, E. Magnetic graphene oxide prepared via ammonia coprecipitation method: The effects of preserved
functional groups on adsorption property. Inorg. Chem. Commun. 2021, 128, 108603. [CrossRef] | |
dc.relation | 41. Zeng, K.; Hachem, K.; Kuznetsova, M.; Chupradit, S.; Su, C.H.; Nguyen, H.C.; El-Shafay, A.S. Molecular dynamic simulation and
artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. J. Mol. Liq.
2022, 347, 118290. [CrossRef] | |
dc.relation | 42. Nuengmatcha, P.; Mahachai, R.; Chanthai, S. Thermodynamic and kinetic study of the intrinsic adsorption capacity of graphene
oxide for malachite green removal from aqueous solution. Orient. J. Chem. 2014, 30, 1463. [CrossRef] | |
dc.relation | 43. Nasiri, A.; Rajabi, S.; Amiri, A.; Fattahizade, M.; Hasani, O.; Lalehzari, A.; Hashemi, M. Adsorption of tetracycline using
CuCoFe2O4@ Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and
thermodynamic study. Arab. J. Chem. 2022, 15, 104014. [CrossRef] | |
dc.relation | 44. Da Silva Bruckmann, F.; Schnorr, C.E.; Da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Bohn
Rhoden, C.R. Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers 2022, 14, 4854.
[CrossRef] | |
dc.relation | 45. Pereira, A.V.; Garabeli, A.A.; Schunemann, G.D.; Borck, P.C. Determination of dissociation constant (Ka) of captopril and
nimesulide: Analytical chemistry experiments for undergraduate pharmacy. Quim Nova 2011, 34, 1656–1660. [CrossRef] | |
dc.relation | 46. Zhu, H.; Chen, T.; Liu, J.; Li, D. Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium
alginate composite fibers. RSC Adv. 2018, 8, 2616–2621. [CrossRef] | |
dc.relation | 47. Bruckmann, F.S.; Rossato Viana, A.; Tonel, M.Z.; Fagan, S.B.; Garcia, W.J.D.S.; Oliveira, A.H.D.; Dorneles, L.S.; Mortari, S.R.; Da
Silva, W.L.; Da Silva, I.Z.; et al. Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and
in vitro cytotoxicity. Environ. Sci. Pollut. Res. 2022, 29, 70413–70434. [CrossRef] | |
dc.relation | 48. Ji, L.; Chen, W.; Bi, J.; Zheng, S.; Xu, Z.; Zhu, D.; Alvarez, P.J. Adsorption of tetracycline on single-walled and multi-walled carbon
nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 2010, 29, 2713–2719. [CrossRef] | |
dc.relation | 49. Liang, J.; Fang, Y.; Luo, Y.; Zeng, G.; Deng, J.; Tan, X.; Tang, N.; Li, X.; He, X.; Feng, C.; et al. Magnetic nanoferromanganese oxides
modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environ. Sci. Pollut. Res. 2019, 26,
5892–5903. [CrossRef] | |
dc.relation | 50. Agarry, S.E.; Aworanti, O.A. Kinetics, Isothermal and Thermodynamic Modelling Studies of Hexavalent Chromium Ions
Adsorption from Simulated Wastewater onto Parkia biglobosa-Sawdust Derived Acid-Steam Activated Carbon. Appl. J. Envir.
Eng. Sci. 2017, 3, 58–76. | |
dc.relation | 51. De Souza, F.M.; Dos Santos, O.A.A.; Vieira, M.G.A. Adsorption of herbicide 2,4-D from aqueous solution using organo-modified
bentonite clay. Environ. Sci. Pollut. Res. 2019, 26, 18329–18342. [CrossRef] [PubMed] | |
dc.relation | 52. Nunes, F.B.; Da Silva Bruckmann, F.; Da Rosa Salles, T.; Rhoden, C.B.R. Study of phenobarbital removal from the aqueous
solutions employing magnetite-functionalized chitosan. Environ. Sci. Pollut. Res. 2022, 29, 1–14. [CrossRef] [PubMed] | |
dc.relation | 53. Carvajal-Bernal, A.M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J.C. Application of the Sips model to the calculation of
maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. Eur. J. Chem. 2017, 8,
112–118. [CrossRef] | |
dc.relation | 54. Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348.
[CrossRef] | |
dc.relation | 55. Gago, D.; Chagas, R.; Ferreira, L.M.; Velizarov, S.; Coelhoso, I. A Novel Cellulose-Based Polymer for Efficient Removal of
Methylene Blue. Membranes 2020, 10, 13. [CrossRef] | |
dc.relation | 56. Salvstrini, S.; Ambrosone, L.; Kopinke, F.D. Some mistakes and misinterpretations in the analysis of thermodynamic adsorption
data. J. Mol. Liq. 2022, 352, 118762. [CrossRef] | |
dc.relation | 57. Tran, H.N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient KD (Qe/Ce)
or Freundlich Constant (KF): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and
Suggestions. Adsorp. Sci. Technol. 2022, 2022, 5553212. [CrossRef] | |
dc.relation | 58. Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the
Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for
Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. [CrossRef] | |
dc.relation | 59. Tran, H.N.; Lima, E.C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic Parameters of Liquid–Phase Adsorption Process
Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Environ. Chem. Eng.
2021, 9, 106674. [CrossRef] | |
dc.relation | 60. Dotto, G.L.; Moura, J.M.D.; Cadaval, T.R.S.; Pinto, L.A.D.A. Application of chitosan films for the removal of food dyes from
aqueous solutions by adsorption. Chem. Eng. J. 2013, 214, 8–16. [CrossRef] | |
dc.relation | 61. Li, Z.; Wu, D.; Liang, Y.; Xu, F.; Fu, R. Facile Fabrication of Novel Highly Microporous Carbons with Superior Size-Selective
Adsorption and Supercapacitance Properties. Nanoscale 2013, 5, 10824–10828. [CrossRef] [PubMed] | |
dc.relation | 19 | |
dc.relation | 1 | |
dc.relation | 2 | |
dc.relation | 15 | |
dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://www.mdpi.com/2073-4441/15/2/293 | |
dc.subject | Adsorption | |
dc.subject | Carbon nanomaterials | |
dc.subject | Magnetite | |
dc.subject | Captopril | |
dc.title | Efficient uptake of angiotensin-converting enzyme ii inhibitor employing graphene oxide-based magnetic nanoadsorbents | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |