Prediction of the behavior of pedestrian bridges using computer models

dc.creatorCala Monroy, Jonathan José
dc.creatorVillar Galindo, Katherine Alejandra
dc.date2019-02-13T20:35:41Z
dc.date2019-02-13T20:35:41Z
dc.date2017-07-01
dc.date.accessioned2023-10-03T20:06:44Z
dc.date.available2023-10-03T20:06:44Z
dc.identifierJ.J. Cala Monroy y K.A. Villar Galindo, “Predicción del comportamiento de puentes peatonales usando modelos de computador” INGE CUC, vol. 13, no. 2, pp. 42-52, 2017. DOI: http://dx.doi.org/10.17981/ingecuc.13.2.2017.05
dc.identifierhttp://hdl.handle.net/11323/2454
dc.identifierhttps://doi.org/10.17981/ingecuc.13.2.2017.05
dc.identifier10.17981/ingecuc.13.2.2017.05
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifier0122-6517
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174278
dc.descriptionIntroducción: En el artículo se da una breve introducción al problema de las vibraciones de baja frecuencia, describiendo como éstas son generadas por el caminar humano y a su vez afectan la estructura del puente peatonal; y porque al final se ven traducidas en una molestia para los usuarios.Objetivo: El documento explica el método comúnmente usado por los ingenieros para la evaluación del efecto de las vibraciones y sus limitaciones, optando por desarrollar una técnica de modelado por computador que represente de manera más aproximada a la realidad el fenómeno de vibraciones de piso en puentes peatonales.Metodología: El estudio está compuesto por dos fases principales: 1) una revisión bibliográfica conceptual al tema de vibraciones de piso enfatizando en la Guía de Diseño No. 11 del Instituto Americano de Construcciones de Acero y 2) se desarrolla el modelo por computador que a su vez comprende: definición de variables, elaboración del modelo dinámico de la estructura, calibración del modelo, evaluación de los parámetros objeto de estudio, análisis de resultados y conclusiones.Resultados: Consecuentemente y conforme con las etapas preliminares se obtienen los resultados de la aceleración para diferentes frecuencias y para diferentes grados de amortiguamiento, observando que el puente de estudio es potencialmente susceptible entre los rangos de 4 a 8 HZ; y que, al entrar resonancia, la estructura presenta una aceleración pico muy superior al umbral para la comodidad humana recomendada en puentes peatonales. Conclusiones: Al respecto se aprecia cómo con el uso de buenas técnicas de modelación y de elementos finitos pueden llegar a obtenerse resultados confiables y que acompañen de manera directa el proceso de diseño de estructuras en este caso puentes peatonales.
dc.descriptionIntroduction− The present article is aimed to present a brief introduction of the issues related to the low frequency vibrations, by indicating human walk-ing as its relevant source which affecting structures of the footbridges and are turned into inconveniences to the pedestrian traffic.Objective−The main objective of this research paper is to explains the most common methods used by engineers for the evaluation of the vibrations and their effects as well as their limitations, furthermore a computer modeling technique was developed in order to approach it to the reality of the phenom-enon of vibrations in pedestrian bridges. Methodology−The present work was divided into main phases: The first phase was a conceptual bibliographical review of the subject of floor vibrations by focusing on the use of the Design Guide No. 11 of the American Institute of Steel Constructions, with regard to the second phase it had to do with the developing of a computer model which included a definition of variables, the elaboration of a dynamic model of the structure, the calibration of the model, the evaluation of the parameters under study and the analysis of results and conclusions. Results−Consequently, and according to the preliminary stages, the results of the acceleration were obtained to different frequencies and to different de-grees of damping by observing that the chosen sample was potentially suscep-tible between four and eight Hz ranges, hence when resonances took place the mentioned structure presented a peak acceleration above the threshold recom-mended by human beings comfort related to pedestrian bridges. Conclusions−To conclude it can be said that through the appropriate model-ing techniques and finite elements convenient and reliable results should be accomplish that leading the design process of structures as pedestrian bridges.
dc.format11 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationINGE CUC; Vol. 13, Núm. 2 (2017)
dc.relationINGE CUC
dc.relationINGE CUC
dc.relation[1] M. R. Willford, and P. A. Young, “A Design Guide for Footfall Induced Vibration of Structures,” The concrete centre, Camberley, Surrey, England, Diciembre 2006.
dc.relation[2] P. Dallard, A. J. Fitzpatrick, A. Flint, S. Le Bourva, A. Low, R. M. R Smith, and M. Willford, “The London Millennium Footbridge,” The Structural Engineer, vol. 79, no. 22, pp. 17-33, November 2001.
dc.relation[3] S. C. Kerr, “Human Induced Loading on Staircases,” Ph.D. Thesis, University of London, London, England, 1998.
dc.relation[4] T. M. Murray, D. E. Allen, and E. E. Ungar, “Steel Design Guide Series 11: Floor Vibrations Due to Human Activity,” American Institute of Steel Construction AISC, Chicago, Illinois, October 2003.
dc.relation[5] R. M. Hanes, “Human Sensitivity to Whole-Body Vibration in Urban Transportation Systems: A Literature Review,” Applied Physics Laboratory, The John Hopkins University, Silver Springs, Maryland, 1970.
dc.relation[6] B. R. Ellingwood. “Serviceability Guidelines for Steel Structures,” Engineering Journal American Institute of Steel Construction , vol 26, pp.1-8, January 1989.
dc.relation[7] Mechanical Vibration and Shock - Evaluation of Human Exposure to Whole-Body Vibration – Part 2: Vibrations in Buildings (1 to 80 Hz), International Standard ISO 2631-2, 2003.
dc.relation[8] D. E. Allen, and T. M. Murray, “Design Criterion for Vibrations Due to Walking,” Engineering Journal American Institute of Steel Construction, vol. 30, pp. 117-129. 1993.
dc.relation[9] M. J. Griffin, Handbook of Human Vibrations. London, England: Elsevier Press, 1990. http://dx.doi.org/10.1121/1.401606
dc.relation[10] T. M. Murray, “Building Floor Vibrations,” Engineering Journal American Institute of Steel Construction, vol. 28, pp. 102-109, 1991.
dc.relation[11] H. Bachmann, et al., Vibration Problems in Structures: Practical Guidelines. Basel, Suiza: Birkhäuser Verlag, 1995. http://dx.doi.org/10.1007/978-3-0348-9231-5
dc.relation[12] G. Pernica, “Dynamic load factors for pedestrian movements and rhythmic exercises,” Acoustique Canadienne, vol. 18, pp. 3-18, January 1990.
dc.relation[13] P. Young, “Improved Floor Vibration Prediction Methodologies”, in proceedings of Arup Vibration Seminar on Engineering for Structural Vibration – Current Developments in Research and Practice, London, U.K., October 2001.
dc.relation[14] J. H. Rainer, and J. C. Swallow, “Dynamic Behavior of a Gymnasium Floor”, Canadian Journal of Civil Engineering, vol. 13, pp. 270-277, 1986. https://dx.doi.org/10.1139/l86-039
dc.relation[15] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhard, and E. Ott, “Crowd synchrony on the Millennium Bridge,” Nature, vol. 438, pp. 43-44, November 2005. https://doi.org/10.1038/438043a
dc.relation[16] I. J. Ramaji, “Cable Stay & Suspension Bridges Failures,” 2013. [Presentacion en Building, Architectural and Civil Engineering Failures and Forensic Practices]. Available: https://failures.wikispaces.com/Cable+Bridge+Failures+Overview [Accessed: 27-Jun-2016].
dc.relation52
dc.relation42
dc.relation2
dc.relation13
dc.relationINGE CUC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceINGE CUC
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1131
dc.subjectVibraciones
dc.subjectRespuesta dinámica
dc.subjectModos de vibración
dc.subjectExcitación dinámica
dc.subjectFrecuencia fundamental
dc.subjectPisos compuestos
dc.subjectPuentes peatonales
dc.subjectElementos finitos
dc.subjectSAP2000®
dc.subjectVibrations
dc.subjectDynamic response
dc.subjectVibration modes
dc.subjectDynamic excitation
dc.subjectFundamental frequency
dc.subjectComposite floors
dc.subjectFootbridges
dc.subjectFinite elements
dc.titlePredicción del comportamiento de puentes peatonales debido a la actividad humana usando modelos de computador
dc.titlePrediction of the behavior of pedestrian bridges using computer models
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución