dc.creatorBarranco Carlos, Adrian Osvaldo
dc.creatorOROZCO, CESAR
dc.creatorMarin Quintero, Juan Guillermo
dc.creatorMora-Flórez, Juan
dc.creatorHerrera Orozco, Andres Ricardo
dc.date2023-08-31T22:07:47Z
dc.date2023-08-31T22:07:47Z
dc.date2023-03-30
dc.date.accessioned2023-10-03T20:06:15Z
dc.date.available2023-10-03T20:06:15Z
dc.identifierA. Barranco-Carlos, C. Orozco-Henao, J. Marín-Quintero, J. Mora-Flórez and A. Herrera-Orozco, "Adaptive Protection for Active Distribution Networks: An Approach Based on Fuses and Relays With Multiple Setting Groups," in IEEE Access, vol. 11, pp. 31075-31091, 2023, doi: 10.1109/ACCESS.2023.3261827
dc.identifierhttps://hdl.handle.net/11323/10432
dc.identifier10.1109/ACCESS.2023.3261827
dc.identifier2169-3536
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174231
dc.descriptionProtection schemes are essential in active distribution networks and microgrids’ reliable, efficient, and flexible operation. However, the protection of these networks presents significant challenges due to operational changes, such as variations in topology, distributed energy resources connection/disconnection, and microgrid operating modes, among others. This paper proposes an adaptive protection scheme based on overcurrent devices with several setting groups based on artificial intelligence algorithms. The developed strategy is composed of two stages. In the off-line stage, a clustering technique is employed to group the active distribution network operating scenarios exhibiting similarities. The optimal settings for the protection devices are determined for each set of scenarios. On the other hand, in the on-line stage, the protection strategy’s implementation and operation, considering the active distribution network’s existing communication system, are defined. Furthermore, the approach formulates the overcurrent relay coordination as a mixed-integer non-linear optimization problem, and as a result, the optimal setting of the overcurrent protection devices is obtained. It aims to minimize the operating time, considering the transformers’ thermal limits, fuse operating curves, and overcurrent relay settings. The solution is determined by using an Augmented Lagrangian genetic algorithm. The presented protection scheme is validated on the modified IEEE 34 node test feeder, considering the main operating scenarios of the active distribution networks, such as topology changes, distributed energy resource connection/disconnection, and microgrid operating modes (on-grid and off-grid). The results obtained and its easy implementation indicates the high potential for real-life applications.
dc.format17 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.publisherUnited States
dc.relationIEEE Access
dc.relation[1] British Petroleum. (2022). BP Energy Outlook: 2022 Edition. [Online]. Available: https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/energy-outlook/bpenergy-outlook-2022.pdf
dc.relation[2] Y. D. B. Ramirez, ‘‘Metodología de diseño conceptual de la automatización de red de distribución de energía que permita la integración de recursos energéticos distribuidos (der) e implementación de estrategias de gestión de demanda (DSM),’’ Ingeniería Eléctrica, to be published.
dc.relation[3] C. D’Adamo, S. Jupe, and C. Abbey, ‘‘Global survey on planning and operation of active distribution networks–update of CIGRE C6.11 working group activities,’’ in Proc. IET Conf. Publications, 2009, pp. 1–4.
dc.relation[4] C. Liu, Z. Chen, and Z. Liu, ‘‘A communication-less overcurrent protection for distribution system with distributed generation integrated,’’ in Proc. 3rd IEEE Int. Symp. Power Electron. Distrib. Gener. Syst. (PEDG), Jun. 2012, pp. 140–147.
dc.relation[5] S. M. Brahma and A. A. Girgis, ‘‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation,’’ IEEE Trans. Power Del., vol. 19, no. 1, pp. 56–63, Jan. 2004.
dc.relation[6] F. Coffele, C. Booth, and A. Dysko, ‘‘An adaptive overcurrent protection scheme for distribution networks,’’ IEEE Trans. Power Del., vol. 30, no. 2, pp. 561–568, Apr. 2015.
dc.relation[7] Y. Ates, A. Boynuegri, M. Uzunoglu, A. Nadar, R. Yumurtacı, O. Erdinc, N. Paterakis, and J. Catalão, ‘‘Adaptive protection scheme for a distribution system considering grid-connected and islanded modes of operation,’’ Energies, vol. 9, no. 5, p. 378, May 2016.
dc.relation[8] P. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, ‘‘A simple adaptive overcurrent protection of distribution systems with distributed generation,’’ IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 428–437, Sep. 2011.
dc.relation[9] B. P. Bhattarai, B. Bak-Jensen, S. Chaudhary, and J. R. Pillai, ‘‘An adaptive overcurrent protection in smart distribution grid,’’ in Proc. IEEE Eindhoven PowerTech, Jun. 2015, pp. 1–6.
dc.relation[10] E. C. Piesciorovsky and N. N. Schulz, ‘‘Comparison of programmable logic and setting group methods for adaptive overcurrent protection in microgrids,’’ Electr. Power Syst. Res., vol. 151, pp. 273–282, Oct. 2017.
dc.relation[11] V. A. Papaspiliotopoulos, G. N. Korres, and N. D. Hatziargyriou, ‘‘Protection coordination in modern distribution grids integrating optimization techniques with adaptive relay setting,’’ in Proc. IEEE Eindhoven PowerTech, Jun. 2015, pp. 1–6.
dc.relation[12] M. Y. Shih, C. A. C. Salazar, and A. C. Enríquez, ‘‘Adaptive directional overcurrent relay coordination using ant colony optimisation,’’ IET Gener., Transmiss. Distrib., vol. 9, no. 14, pp. 2040–2049, Nov. 2015.
dc.relation[13] C. Reiz and J. B. Leite, ‘‘Optimal coordination of protection devices in distribution networks with distributed energy resources and microgrids,’’ IEEE Access, vol. 10, pp. 99584–99594, 2022.
dc.relation[14] A. Conde and M. Y. Shih, ‘‘An adaptive overcurrent coordination scheme withstanding active network operations,’’ IEEE Access, vol. 10, pp. 104270–104284, 2022.
dc.relation[15] A. H. El-Hamrawy, A. A. M. Ebrahiem, and A. I. Megahed, ‘‘Improved adaptive protection scheme based combined centralized/decentralized communications for power systems equipped with distributed generation,’’ IEEE Access, vol. 10, pp. 97061–97074, 2022.
dc.relation[16] M. Yousaf, A. Jalilian, K. M. Muttaqi, and D. Sutanto, ‘‘An adaptive overcurrent protection scheme for dual-setting directional recloser and fuse coordination in unbalanced distribution networks with distributed generation,’’ IEEE Trans. Ind. Appl., vol. 58, no. 2, pp. 1831–1842, Mar. 2022.
dc.relation[17] N. El Naily, S. M. Saad, T. Hussein, and F. A. Mohamed, ‘‘Minimizing the impact of distributed generation of a weak distribution network with an artificial intelligence technique,’’ Appl. Sol. Energy, vol. 53, no. 2, pp. 109–122, Apr. 2017.
dc.relation[18] A. Ataee-Kachoee, H. Hashemi-Dezaki, and A. Ketabi, ‘‘Optimized adaptive protection coordination of microgrids by dual-setting directional overcurrent relays considering different topologies based on limited independent relays’ setting groups,’’ Electr. Power Syst. Res., vol. 214, Jan. 2023, Art. no. 108879. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779622009324
dc.relation[19] M. N. Alam, ‘‘Adaptive protection coordination scheme using numerical directional overcurrent relays,’’ IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 64–73, Jan. 2019.
dc.relation[20] A. Samadi and R. M. Chabanloo, ‘‘Adaptive coordination of overcurrent relays in active distribution networks based on independent change of relays’ setting groups,’’ Int. J. Electr. Power Energy Syst., vol. 120, Sep. 2020, Art. no. 106026. [Online]. Available: https://www. sciencedirect.com/science/article/pii/S014206151933532X
dc.relation[21] M. Ojaghi and V. Mohammadi, ‘‘Use of clustering to reduce the number of different setting groups for adaptive coordination of overcurrent relays,’’ IEEE Trans. Power Del., vol. 33, no. 3, pp. 1204–1212, Jun. 2018.
dc.relation[22] S. M. E. Ghadiri and K. Mazlumi, ‘‘Adaptive protection scheme for microgrids based on SOM clustering technique,’’ Appl. Soft Comput., vol. 88, Mar. 2020, Art. no. 106062. [Online]. Available: https://www. sciencedirect.com/science/article/pii/S1568494620300028
dc.relation[23] S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, and N. Muñoz-Galeano, ‘‘Optimal coordination of over-current relays in microgrids using unsupervised learning techniques,’’ Appl. Sci., vol. 11, no. 3, p. 1241, Jan. 2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/3/1241
dc.relation[24] P. Naveen and P. Jena, ‘‘Adaptive protection scheme for microgrid with multiple point of common couplings,’’ IEEE Syst. J., vol. 15, no. 4, pp. 5618–5629, Dec. 2021.
dc.relation[25] M. Ghotbi-Maleki, R. M. Chabanloo, H. H. Zeineldin, and S. M. H. Miangafsheh, ‘‘Design of setting group-based overcurrent protection scheme for active distribution networks using MILP,’’ IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1185–1193, Mar. 2021.
dc.relation[26] E. Sorrentino and J. V. Rodríguez, ‘‘Optimal coordination of directional overcurrent protections considering the occurrence probability of different configurations and the effect of grouping cases,’’ Electr. Power Syst. Res., vol. 218, May 2023, Art. no. 109163. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779623000524
dc.relation[27] A. K. Soni, A. Kumar, R. K. Panda, A. Mohapatra, and S. N. Singh, ‘‘Adaptive coordination of relays in AC microgrid considering operational and topological changes,’’ IEEE Syst. J., early access, Dec. 19, 2022, doi: 10.1109/JSYST.2022.3227311.
dc.relation[28] IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays, Standard IEEE c37.112-1996, I. Power and E. Society, 1996.
dc.relation[29] Measuring Relays and Protection Equipement—Part 151: Functional Requirments for Over/Under Current Protection, International Electrotechnical Commission (IEC), Geneva, Switzerland, 2008.
dc.relation[30] SANDC. (1986). Sc ‘k’ Speed Minimum Melting Time-Current Characteristic Curves. Positrol Fuse Links. [Online]. Available: https://www.sandc.com/en/products–services/products/positrol-fuselinks/
dc.relation[31] A. M. Bayen and T. Siauw, ‘‘Interpolation,’’ in An Introduction to MATLAB Programming and Numerical Methods for Engineers, A. M. Bayen and T. Siauw, Eds. Boston, MA, USA: Academic, 2015, pp. 211–223. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/B9780124202283000142
dc.relation[32] Protection and Coordination of Industrial and Commercial Power Systems, Standard IEEE 242-2001, Institute of Electrical and Electronics Engineers, 2001.
dc.relation[33] V. S. Madureira and T. C. Vieira, ‘‘Coordination of inverse-time overcurrent relays with fuses using genetic algorithm,’’ in Proc. Simposio Brasileiro de Sistemas Eletricos (SBSE), May 2018, pp. 1–6.
dc.relation[34] G. D. Ferreira, ‘‘Cuaderno didáctico de subestaciones eléctricas y protecciones de sistemas eléctricos,’’ Tech. Rep., 2012, pp. 1–123.
dc.relation[35] A. B. Carlos, C. O. Henao, J. M. Quintero, J. M. Florez, and A. H. Orozco, ‘‘Clustering techniques performance for the coordination of adaptive overcurrent protections,’’ in Proc. IEEE ANDESCON, Nov. 2022, pp. 1–6.
dc.relation[36] H. Belyadi and A. Haghighat, ‘‘Unsupervised machine learning: Clustering algorithms,’’ in Machine Learning Guide for Oil and Gas Using Python, H. Belyadi and A. Haghighat, Eds. London, U.K.: Gulf Professional Publishing, 2021, pp. 125–168. [Online]. Available: https:// www.sciencedirect.com/science/article/pii/B9780128219294000020
dc.relation[37] M. N. Alam, ‘‘Overcurrent protection of AC microgrids using mixed characteristic curves of relays,’’ Comput. Electr. Eng., vol. 74, pp. 74–88, Mar. 2019. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S0045790618313181
dc.relation[38] R. M. Chabanlooa, M. G. Maleki, S. M. M. Agah, and E. M. Habashi, ‘‘Comprehensive coordination of radial distribution network protection in the presence of synchronous distributed generation using fault current limiter,’’ Int. J. Elect. Power Energy Syst., vol. 99, pp. 214–224, Jul. 2018. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0142061517314023
dc.relation[39] A. E. Dahej, S. Esmaeili, and H. Hojabri, ‘‘Co-optimization of protection coordination and power quality in microgrids using unidirectional fault current limiters,’’ IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5080–5091, Sep. 2018.
dc.relation[40] MATLAB. (2022). Nonlinear Constraint Solver Algorithms Augmented Lagrangian Genetic Algorithm. [Online]. Available: https://la.mathworks.com/help/gads/description-of-the-nonlinearconstraint-solver.html
dc.relation[41] MATLAB. (2019). GA Find Minimum of Function Using Genetic Algorithm. [Online]. Available: https://la.mathworks.com/help/gads/ga.html
dc.relation[42] A. Almalawi, Z. Tari, A. Fahad, and X. Yi, SCADA-Based Security Testbed, 2021, pp. 25–62.
dc.relation[43] M. Singh, T. Vishnuvardhan, and S. G. Srivani, ‘‘Adaptive protection coordination scheme for power networks under penetration of distributed energy resources,’’ IET Gener., Transmiss. Distrib., vol. 10, no. 15, pp. 3919–3929, Nov. 2016.
dc.relation[44] J. Marin-Quintero, C. Orozco-Henao, and J. Mora-Florez, ‘‘Data-driven topology detector for self-healing strategies in active distribution networks,’’ Energy Rep., vol. 9, pp. 377–385, May 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352484723000057
dc.relation[45] (2001). IEEE 34 Node Test Feeder, Distribution System Analysis Subcommittee. [Online]. Available: https://site.ieee.org/pes-testfeeders/resources/
dc.relation[46] S. AG. Overcurrent and Feeder Protecion Siprotec 7SJ82. [Online]. Available: https://cache.industry.siemens.com
dc.relation[47] S. Horowitz and A. Phadke, Power System Relaying. Hoboken, NJ, USA: Wiley, 2008. [Online]. Available: https://books.google.com. br/books?id=4A3Kw3fgNusC
dc.relation[48] N. A. E. R. Corporation. (2015). Considerations for Power Plant and Transmission System Protection Coordination. [Online]. Available: https://www.nerc.com/comm/PC/System%20Protection%20and% 20Control%20Subcommittee%20SPCS%2020/SPCS%20Gen% 20Prot%20Coordination%20Technical%20Reference%20Document.pdf
dc.relation[49] MATLAB Version 9.13.0.2049777 (R2022b), Mathworks, Inc., Natick, MA, USA, 2022.
dc.relation[50] H. K. Hoidalen, ATPDraw Windows Version 7.2. Rueil-Malmaison, France: Schneider Electric, 2020.
dc.relation[51] MATLAB. (2022). Mixed Integer Ga Optimization. [Online]. Available: https://la.mathworks.com/help/gads/mixed-integer-optimization.html
dc.relation31091
dc.relation31075
dc.relation11
dc.rights© Copyright 2023 IEEE - All rights reserved.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://ieeexplore.ieee.org/document/10080932/authors#authors
dc.subjectActive distribution networks
dc.subjectMicrogrids
dc.subjectOvercurrent devices
dc.subjectClustering
dc.subjectProtection coordination scheme
dc.titleAdaptive protection for active distribution networks: an approach based on fuses and relays with multiple setting groups
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución