dc.creatorTzu-Chia, Chen
dc.creatorRajiman, Rajiman
dc.creatorElveny, Marischa
dc.creatorGrimaldo Guerrero, John William
dc.creatorLawal, Adedoyin Isola
dc.creatorAcwin Dwijendra, Ngakan Ketut
dc.creatoraravindhan, surendar
dc.creatorDanshina, Svetlana
dc.creatorZHU, Yu
dc.date2021-09-06T21:20:14Z
dc.date2021-09-06T21:20:14Z
dc.date2021-07-07
dc.date2022-07-07
dc.date.accessioned2023-10-03T20:04:18Z
dc.date.available2023-10-03T20:04:18Z
dc.identifier2193567X
dc.identifierhttps://hdl.handle.net/11323/8642
dc.identifierhttps://doi.org/10.1007/s13369-021-05966-0
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174197
dc.descriptionA broad range of potential chemical compositions makes difficult design of novel bulk metallic glasses (BMGs) without performing expensive experimentations. To overcome this problem, it is very important to establish predictive models based on artificial intelligence. In this work, a machine learning (ML) approach was proposed for predicting glass formation in numerous alloying compositions and designing novel glassy alloys. The results showed that our ML model accurately predicted the glass formation and critical thickness of MGs. As a case study, the ternary Fe–B–Co system was selected and effects of minor additions of Cr, Nb and Y with different atomic percentages were evaluated. It was found that the minor addition of Nb and Y leads to the significant improvement of glass-forming ability (GFA) in the Fe–B–Co system; however, a shift in the optimized alloying composition was occurred. The experimental results on selective alloying compositions also confirmed the capability of our ML model for designing novel Fe-based BMGs. © 2021, King Fahd University of Petroleum & Minerals.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherArabian Journal for Science and Engineering
dc.relationHu, F.; Yuan, C.; Luo, Q.; Yang, W.; Shen, B.: Effects of heavy rare-earth addition on glass-forming ability, thermal, magnetic, and mechanical properties of Fe-RE-B-Nb (RE = Dy, Ho, Er or Tm) bulk metallic glass. J. Non-cryst. Solids 525, 119681 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119681
dc.relationZheng, H.; Zhu, L.; Jiang, S.S.; Wang, Y.G.; Liu, S.N.; Lan, S.; Chen, F.G.: Role of Ni and Co in tailoring magnetic and mechanical properties of Fe84Si2B13P1 metallic glass. J. Alloys Compd. 816, 152549 (2020). https://doi.org/10.1016/j.jallcom.2019.152549
dc.relationChen, S.-Q.; Li, M.; Ma, X.-Y.; Zhou, M.-J.; Wang, D.; Yan, M.-Y.; Li, Z.; Yao, K.-F.: Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere 264, 128392 (2021). https://doi.org/10.1016/j.chemosphere.2020.128392
dc.relationChen, S.-Q.; Hui, K.-Z.; Dong, L.-Z.; Li, Z.; Zhang, Q.; Gu, L.; Zhao, W.; Lan, S.; Ke, Y.; Shao, Y.; Hahn, H.; Yao, K.-F.: Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Sci. China Mater. 63, 453–466 (2020). https://doi.org/10.1007/s40843-019-1205-5
dc.relationChen, H.; Dong, B.; Zhou, S.; Li, X.; Qin, J.: Structural, magnetic, and electronic properties of Fe82Si4B10P4 metallic glass. Sci. Rep. 8, 5680 (2018). https://doi.org/10.1038/s41598-018-23952-9
dc.relationLi, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P.: Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog. Mater. Sci. 103, 235–318 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.003
dc.relationZhang, P.C.; Chang, J.; Wang, H.P.: Transition from crystal to metallic glass and micromechanical property change of Fe-B-Si alloy during rapid solidification. Metall. Mater. Trans. B 51, 327–337 (2020). https://doi.org/10.1007/s11663-019-01748-0
dc.relationLi, H.X.; Li, C.Q.; Cao, D.; Yang, W.M.; Li, Q.; Lu, Z.P.: Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass. Scr. Mater. 135, 24–28 (2017). https://doi.org/10.1016/j.scriptamat.2017.03.018
dc.relationLesz, S.: Effect of cooling rates on the structure, density and micro-indentation behavior of the Fe, Co-based bulk metallic glass. Mater. Charact. 124, 97–106 (2017). https://doi.org/10.1016/j.matchar.2016.12.016
dc.relationLiang, D.; Wei, X.; Chang, C.; Li, J.; Wang, X.; Shen, J.: Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass. J. Alloys Compd. 731, 1146–1150 (2018). https://doi.org/10.1016/j.jallcom.2017.10.104
dc.relationOuyang, D.; Xing, W.; Li, N.; Li, Y.; Liu, L.: Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting. Addit. Manuf. 23, 246–252 (2018). https://doi.org/10.1016/j.addma.2018.08.020
dc.relationLiu, X.; Li, X.; He, Q.; Liang, D.; Zhou, Z.; Ma, J.; Yang, Y.; Shen, J.: Machine learning-based glass formation prediction in multicomponent alloys. Acta Mater. 201, 182–190 (2020). https://doi.org/10.1016/j.actamat.2020.09.081
dc.relationXiong, J.; Zhang, T.-Y.; Shi, S.-Q.: Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 9, 576–585 (2019). https://doi.org/10.1557/mrc.2019.44
dc.relationLu, X.; Deng, L.; Du, J.; Vienna, J.D.: Predicting boron coordination in multicomponent borate and borosilicate glasses using analytical models and machine learning. J. Non-cryst. Solids 553, 120490 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120490
dc.relationCai, A.; Xiong, X.; Liu, Y.; An, W.; Tan, J.; Luo, Y.: Artificial neural network modeling for undercooled liquid region of glass forming alloys. Comput. Mater. Sci. 48, 109–114 (2010). https://doi.org/10.1016/j.commatsci.2009.12.012
dc.relationTripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S.: Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput. Mater. Sci. 107, 79–87 (2015). https://doi.org/10.1016/j.commatsci.2015.05.010
dc.relationTripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S.: A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics 90, 9–15 (2017). https://doi.org/10.1016/j.intermet.2017.06.008
dc.relationAlcobaça, E.; Mastelini, S.M.; Botari, T.; Pimentel, B.A.; Cassar, D.R.; de Carvalho, A.C.P.L.F.; Zanotto, E.D.: Explainable machine learning algorithms for predicting glass transition temperatures. Acta Mater. 188, 92–100 (2020). https://doi.org/10.1016/j.actamat.2020.01.047
dc.relationWard, L.; O’Keeffe, S.C.; Stevick, J.; Jelbert, G.R.; Aykol, M.; Wolverton, C.: A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159, 102–111 (2018). https://doi.org/10.1016/j.actamat.2018.08.002
dc.relationSamavatian, M.; Gholamipour, R.; Samavatian, V.: Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput. Mater. Sci. 186, 110025 (2021). https://doi.org/10.1016/j.commatsci.2020.110025
dc.relationRen, F.; Ward, L.; Williams, T.; Laws, K.J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A.: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018). https://doi.org/10.1126/sciadv.aaq1566
dc.relationDasgupta, A.; Broderick, S.R.; Mack, C.; Kota, B.U.; Subramanian, R.; Setlur, S.; Govindaraju, V.; Rajan, K.: Probabilistic assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams. Sci. Rep. 9, 357 (2019). https://doi.org/10.1038/s41598-018-36224-3
dc.relationKawazoe, Y.; Yu, J.-Z.; Tsai, A.-P.; Masumoto, T.: Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, 1st edn. Springer-Verlag, Berlin, Heidelberg (1997)
dc.relationKawazoe, Y.; Yu, J.-Z.; Tsai, A.-P.; Masumoto, T.: Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, 1st edn. Springer-Verlag, Berlin, Heidelberg (1997)
dc.relationLu, Z.P.; Tan, H.; Li, Y.; Ng, S.C.: Correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses (2000)
dc.relationLi, Y.: A relationship between glass-forming ability and reduced glass transition temperature near eutectic composition. Mater. Trans. 42, 556–561 (2001)
dc.relationXiong, J.; Shi, S.-Q.; Zhang, T.-Y.: A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 187, 108378 (2020). https://doi.org/10.1016/j.matdes.2019.108378
dc.relationSamavatian, V.; Fotuhi-Firuzabad, M.; Samavatian, M.; Dehghanian, P.; Blaabjerg, F.: Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 10, 14821 (2020). https://doi.org/10.1038/s41598-020-71926-7
dc.relationJoress, H.; DeCost, B.L.; Sarker, S.; Braun, T.M.; Jilani, S.; Smith, R.; Ward, L.; Laws, K.J.; Mehta, A.; Hattrick-Simpers, J.R.: A high-throughput structural and electrochemical study of metallic glass formation in Ni–Ti–Al. ACS Comb. Sci. 22, 330–338 (2020). https://doi.org/10.1021/acscombsci.9b00215
dc.relationŚniadecki, Z.: Glass-forming ability of Fe-Ni alloys substituted by group V and VI transition metals (V, Nb, Cr, Mo) studied by thermodynamic modeling. Metall. Mater. Trans. A 51, 4777–4785 (2020). https://doi.org/10.1007/s11661-020-05897-9
dc.relationJiang, Q.; Chi, B.Q.; Li, J.C.: A valence electron concentration criterion for glass-formation ability of metallic liquids. Appl. Phys. Lett. 82, 2984–2986 (2003). https://doi.org/10.1063/1.1571984
dc.relationZhou, C.; Guo, C.; Li, C.; Du, Z.: Thermodynamic assessment of the phase equilibria and prediction of glass-forming ability of the Al–Cu–Zr system. J. Non-cryst. Solids 461, 47–60 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.09.031
dc.relationGanorkar, S.; Lee, Y.-H.; Lee, S.; Cho, Y.C.; Ishikawa, T.; Lee, G.W.: Unequal effect of thermodynamics and kinetics on glass forming ability of Cu–Zr alloys. AIP Adv. 10, 45114 (2020). https://doi.org/10.1063/5.0002784
dc.relationHu, Y.-C.; Tanaka, H.: Physical origin of glass formation from multicomponent systems. Sci. Adv. 6, eabd2928 (2020). https://doi.org/10.1126/sciadv.abd2928
dc.relationOjovan, M.I.: Glass formation. Encycl. Glas. Sci. Technol. Hist. Cult. (2021). https://doi.org/10.1002/9781118801017.ch3.1
dc.relationMukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.-K.: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689–3695 (2004). https://doi.org/10.1016/j.actamat.2004.04.023
dc.relationLouzguine-Luzgin, D.V.; Inoue, A.: Bulk metallic glasses. Encycl. Glas. Sci. Technol. Hist. Cult. (2021). https://doi.org/10.1002/9781118801017.ch7.10
dc.relationFujita, T.; Konno, K.; Zhang, W.; Kumar, V.; Matsuura, M.; Inoue, A.; Sakurai, T.; Chen, M.W.: Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 75502 (2009). https://doi.org/10.1103/PhysRevLett.103.075502
dc.relationLi, M.; Guan, H.; Yang, S.; Ma, X.; Li, Q.: Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallic glass with excellent mechanical properties. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140542
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourceArabian Journal for Science and Engineering
dc.sourcehttps://link.springer.com/article/10.1007%2Fs13369-021-05966-0
dc.subjectBulk metallic glass
dc.subjectGlass-forming ability
dc.subjectMachine learning
dc.subjectMaterials design
dc.titleEngineering of novel fe-based bulk metallic glasses using a machine learning-based approach
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución