dc.creator | Acuña Bedoya, Jawer David | |
dc.creator | Comas Cabrales, Jovannis Alexander | |
dc.creator | Alvarez Pugliese, Christian Eduardo | |
dc.creator | Marriaga-Cabrales, Nilson | |
dc.date | 2021-03-26T15:35:29Z | |
dc.date | 2021-03-26T15:35:29Z | |
dc.date | 2020-05-27 | |
dc.date.accessioned | 2023-10-03T20:03:34Z | |
dc.date.available | 2023-10-03T20:03:34Z | |
dc.identifier | 22133437 | |
dc.identifier | https://hdl.handle.net/11323/8075 | |
dc.identifier | https://doi.org/10.1016/j.jece.2020.104074 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9174137 | |
dc.description | The performance of an electrochemical process for the regeneration of granular activated carbon (GAC) was
evaluated using boron-doped diamond (BDD) anodes. Three different configurations were tested in the reactor:
fluidized bed, packed bed with a divided cell and packed bed with an undivided cell. The GAC used was
previously saturated with a synthetic solution of methylene blue (MB). The effects of three operational
parameters were evaluated: current density, initial pH and reaction time, and NaCl as the electrolyte.
Regeneration efficiencies (REs) of up to 76% ± 2 were achieved with a current density of 6 mA·cm-2 during 24
h of reaction, and a specific electric energy consumption of 1530 kWh ton-1 of GAC was obtained. The best
results were obtained using the packed bed reactor with a divided cell and the GAC in the cathodic compartment.
The present results were attributed to an improvement in the desorption caused by the local alkaline pH in the
cathodic compartment, to the contribution of the electrochemical oxidation by the hydroxyl radical, and, in
parallel, to the chemical oxidation of the organic compounds by the oxidizing species formed from the chloride
ion. It was also found that the electrochemical regeneration process has a negative effect on the GAC integrity
after three cycles of continuous regeneration | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent
solid matrices used in adsorption of organic pollutants from surface water: a critical
review, Desalin. Water Treat. 57 (2016) 518–544. | |
dc.relation | [2] L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated
carbon saturated with organic compounds, Chem. Eng. J. 155 (2009) 763–768.
doi:10.1016/j.cej.2009.09.020. | |
dc.relation | [3] X. Liu, G. Yu, W. Han, Granular activated carbon adsorption and microwave
regeneration for the treatment of 2 , 4 , 5-trichlorobiphenyl in simulated soil-washing
solution, 147 (2007) 746–751. doi:10.1016/j.jhazmat.2007.01.076 | |
dc.relation | [4] X. Quan, X.L. Ã, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration of acid orange 7-
exhausted granular activated carbons with microwave irradiation, 38 (2004) 4484–
4490. doi:10.1016/j.watres.2004.08.031. | |
dc.relation | [5] J.-L. Lim, M. Okada, Regeneration of granular activated carbon using ultrasound.,
Ultrason. Sonochem. 12 (2005) 277–282. doi:10.1016/j.ultsonch.2004.02.003 | |
dc.relation | [6] P.M. Alvarez, F.J. Beltran, V. Gomez-Serrano, J. Jaramillo, E.M. Rodriguez,
Comparison between thermal and ozone regenerations of spent activated carbon
exhausted with phenol, Water Res. 38 (2004) 2155–2165.
doi:10.1016/j.watres.2004.01.030. | |
dc.relation | [7] R.M. Narbaitz, A. Karimi‐ Jashni, Electrochemical regeneration of granular
activated carbons loaded with phenol and natural organic matter, Environ. Technol.
30 (2009) 27–36. doi:10.1080/09593330802422803 | |
dc.relation | [8] I. Benhamed, L. Barthe, R. Kessas, C. Julcour, H. Delmas, Effect of transition metal
impregnation on oxidative regeneration of activated carbon by catalytic wet air
oxidation, Appl. Catal. B Environ. 187 (2016) 228–237.
doi:10.1016/j.apcatb.2016.01.016. | |
dc.relation | [9] D. Feng, H. Tan, J.S.J. Van Deventer, Ultrasonic elution of gold from activated
Journal Pre-proof
26
carbon, Miner. Eng. 16 (2003) 257–264 | |
dc.relation | [10] K.Y. Foo, B.H. Hameed, Microwave-assisted regeneration of activated carbon,
Bioresour. Technol. 119 (2012) 41–47. doi:10.1016/j.biortech.2012.05.061. | |
dc.relation | [11] Q. Zhang, S. Cheng, H. Xia, L. Zhang, Removal of Congo red and methylene blue
using H2O2 modified activated carbon by microwave regeneration: isotherm and
kinetic studies, Mater. Res. Express. 6 (2019) 0–22. | |
dc.relation | [12] Y. Sun, B. Zhang, T. Zheng, P. Wang, Regeneration of activated carbon saturated
with chloramphenicol by microwave and ultraviolet irradiation, Chem. Eng. J. 320
(2017) 264–270. doi:10.1016/j.cej.2017.03.007. | |
dc.relation | [13] M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S. Judd, Bio-regeneration of
activated carbon: A comprehensive review, Sep. Purif. Technol. 197 (2018) 345–
359. doi:10.1016/j.seppur.2018.01.015. | |
dc.relation | [14] Y. Zhang, D. Yang, P. Ning, Y. Li, S. Tian, J. Gu, Regeneration of Phenol-Saturated
Activated Carbon by Supercritical Water: Effect of H2O2 and Alkali Metal
Catalysts, J. Environ. Eng. (United States). 145 (2019) 1–10.
doi:10.1061/(ASCE)EE.1943-7870.0001601 | |
dc.relation | [15] Y. Ito, I. Ushiki, Y. Sato, H. Inomata, Influence of Heat Treatment in Exhaust
Treatment Process on Activated Carbon Regeneration using Supercritical Carbon
Dioxide, KAGAKU KOGAKU RONBUNSHU. 45 (2019) 133–139.
doi:10.1252/kakoronbunshu.45.133. | |
dc.relation | [16] Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon
used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean.
Prod. 86 (2015) 424–431. doi:10.1016/j.jclepro.2014.08.008. | |
dc.relation | [17] R.M. Narbaitz, A. Karimi-Jashni, Electrochemical reactivation of granular activated
Journal Pre-proof
27
carbon: Impact of reactor configuration, Chem. Eng. J. 197 (2012) 414–423.
doi:10.1016/j.cej.2012.05.049 | |
dc.relation | [18] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an
integrated three-phase electrochemical reactor, Chemosphere. 65 (2006) 1197–1203.
doi:10.1016/j.chemosphere.2006.03.054. | |
dc.relation | [19] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón,
Electrochemical regeneration and porosity recovery of phenol-saturated granular
activated carbon in an alkaline medium, Carbon N. Y. 48 (2010) 2734–2745.
doi:10.1016/j.carbon.2010.03.071. | |
dc.relation | [20] M. Garcia-Oton, F. Montilla, M.A. Lillo-Rodenas, E. Morallón, J.L. Vazquez,
Electrochemical Regeneration of Activated Carbon Saturated with Toluene, J. Appl.
Electrochem. 35 (2005) 319–325. doi:10.1007/s10800-004-7470-3. | |
dc.relation | [21] H. Zhang, Regeneration of exhausted activated carbon by electrochemical method,
85 (2002) 81–85. doi:https://doi.org/10.1016/S1385-8947(01)00176-0. | |
dc.relation | [22] C.-H. Weng, M.-C. Hsu, Regeneration of granular activated carbon by an
electrochemical process, Sep. Purif. Technol. 64 (2008) 227–236.
doi:10.1016/j.seppur.2008.10.006. | |
dc.relation | [23] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008.
http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March
12, 2014) | |
dc.relation | [24] D. Gandini, E. Mahé, P.A. Michaud, W. Haenni, A. Perret, C. Comninellis,
Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater
treatment, J. Appl. Electrochem. 30 (2000) 1345–1350.
doi:10.1023/A:1026526729357. | |
dc.relation | [25] A.A. Najafpoor, M. Davoudi, E. Rahmanpour Salmani, Decolorization of synthetic
textile wastewater using electrochemical cell divided by cellulosic separator, J.
Environ. Heal. Sci. Eng. 15 (2017) 1–11. doi:10.1186/s40201-017-0273-3. | |
dc.relation | [26] M.H. Zhou, L.C. Lei, Electrochemical regeneration of activated carbon loaded with
p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta. 51 (2006)
4489–4496. doi:10.1016/j.electacta.2005.12.028. | |
dc.relation | [27] R.M. Narbaitz, J. Cen, Alternative methods for determining the percentage
regeneration of activated carbon, Water Res. 31 (1997) 2532–2542.
doi:10.1016/S0043-1354(97)00085-7 | |
dc.relation | [28] T.C. An, X.H. Zhu, Y. Xiong, Feasibility study of photoelectrochemical degradation
of methylene blue with three-dimensional electrode-photocatalytic reactor,
Chemosphere. 46 (2002) 897–903. doi:10.1016/S0045-6535(01)00157-6. | |
dc.relation | [29] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano,
New hybrid process combining adsorption on sawdust and electroxidation using a
BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017)
1–8. doi:10.1016/j.seppur.2016.11.020. | |
dc.relation | [30] C. a. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing
synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B
Environ. 87 (2009) 105–145. doi:10.1016/j.apcatb.2008.09.017. | |
dc.relation | [31] C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional
electrochemical process for wastewater treatment: A general review, Chem. Eng. J.
228 (2013) 455–467. doi:10.1016/j.cej.2013.05.033 Review. | |
dc.relation | [32] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in
sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016)
426–454. doi:10.1016/j.rser.2015.10.139. | |
dc.relation | [33] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn ( OH ) 6 Photocatalyst
for Methylene Blue Degradation : Electrolyte-Dependent Morphology and
Performance, (2018) 10849–10856. doi:10.1002/slct.201802195. | |
dc.relation | [34] F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number as useful indicator
to evaluate the adsorptive capacity of granular activated carbon in batch mode:
Influence of adsorbate/adsorbent mass ratio and particle size, J. Hazard. Mater. 165
(2009) 291–299. doi:10.1016/j.jhazmat.2008.09.106. | |
dc.relation | [35] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience,
John Wiley & Sons, New York, 1973. doi:10.1002/aic.690190245. | |
dc.relation | [36] R. V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration
of granular activated carbons: A review, J. Hazard. Mater. 355 (2018) 34–49 doi:10.1016/j.jhazmat.2018.04.079 | |
dc.relation | [37] B. Liu, H. Cang, L. Cui, H. Zhang, Electrochemical polymerization of methylene
blue on glassy carbon electrode, Int. J. Electrochem. Sci. 12 (2017) 9907–9913.
doi:10.20964/2017.10.49 | |
dc.relation | [38] S. Wang, Z.H. Zhu, A. Coomes, F. Haghseresht, G.Q. Lu, The physical and surface
chemical characteristics of activated carbons and the adsorption of methylene blue
from wastewater, 284 (2005) 440–446. doi:10.1016/j.jcis.2004.10.050 | |
dc.relation | [39] R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon,
Water Res. 28 (1994) 1771–1778. doi:10.1016/0043-1354(94)90250-X | |
dc.relation | [40] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical reactivation of granular activated
carbon: pH dependence, J. Environ. Eng. Sci. 4 (2005) 187–194. doi:10.1139/s04-055. | |
dc.relation | [41] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical Reactivation of Granular
Activated Carbon: Effect of Electrolyte Mixing, J. Environ. Eng. 131 (2005) 443–
449. doi:10.1061/(ASCE)0733-9372(2005)131:3(443). | |
dc.relation | [42] C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N.
Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated
with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199.
doi:10.1016/j.diamond.2019.02.018 | |
dc.relation | [43] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption
processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013)
14251–14260. doi:10.1021/ie401571p. | |
dc.relation | [44] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Applied Catalysis B : Environmental
Electrochemical oxidation of ofloxacin using a TiO 2 -based kinetics and mass
transfer impact, "Applied Catal. B, Environ. 203 (2017) 515–525.
doi:10.1016/j.apcatb.2016.10.057. | |
dc.relation | [45] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem.
Commun. 100 (2019) 85–89. doi:10.1016/j.elecom.2019.01.025. | |
dc.relation | [46] J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang, Electrochemical
oxidation of COD from real textile wastewaters: Kinetic study and energy
consumption, Chemosphere. 171 (2017) 332–338.
doi:10.1016/j.chemosphere.2016.12.065. | |
dc.relation | [47] J. Muff, H. Jepsen, E. Søgaard, Bench-Scale Study of Electrochemical Oxidation for
On-Site Treatment of Polluted Groundwater, J. Environ. Eng. 138 (2012) 915–922.
Journal Pre-proof
31
doi:10.1061/(ASCE)EE.1943-7870.0000561. | |
dc.relation | [48] P.J. Tauetsile, E.A. Oraby, J.J. Eksteen, Adsorption behaviour of copper and gold
glycinates in alkaline media onto activated carbon. Part 1: Isotherms,
Hydrometallurgy. 178 (2018) 202–208. doi:10.1016/j.hydromet.2018.04.015. | |
dc.relation | [49] B. Karabacakoğlu, O. Savlak, Electrochemical Regeneration of Cr (VI) Saturated
Granular and Powder Activated Carbon : Comparison of Regeneration Efficiency,
Ind. Eng. Chem. Res. 53 (2014). doi:dx.doi.org/10.1021/ie500161d | |
dc.relation | [50] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption
process: An overview, current stage and future prospects, J. Hazard. Mater. 170
(2009) 552–559. doi:10.1016/j.jhazmat.2009.05.057. | |
dc.relation | [51] J.M.P.Q. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf.
Und Stoffuebertragung. 42 (2006) 279–310. doi:10.1007/s00231-005-0019-0. | |
dc.relation | [52] N. ‐ W Han, J. Bhakta, R.G. Carbonell, Longitudinal and lateral dispersion in
packed beds: Effect of column length and particle size distribution, AIChE J. 31
(1985) 277–288. doi:10.1002/aic.690310215 | |
dc.relation | [53] D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem.
Eng. Sci. 60 (2005) 6947–6957. doi:10.1016/j.ces.2005.05.068. | |
dc.relation | [54] Mintek, Energy efficient Minfurn TM for regeneration of activated carbon, (n.d.) 1.
http://www.mintek.co.za/wp-content/uploads/2014/10/The-MinfurnTM-energyefficient-carbon-furnace-2014.pdf (accessed December 14, 2015). | |
dc.relation | [55] S. Bradshaw, E. Van Wyk, J. De Swardt, Preliminary economic assessment of
microwave regeneration of activated carbon for the carbon in pulp process, J.
Microw. Power Electromagn. Energy. 32 (1997) 131–144.
http://cat.inist.fr/?aModele=afficheN&cpsidt=10861378. | |
dc.relation | [56] Condias, DIACHEM® DIAMOND ELECTRODES, (n.d.).
https://condias.de/en/products/diachem/ (accessed January 26, 2020). | |
dc.relation | [57] X.R. Lu, M.H. Ding, C. Zhang, W.Z. Tang, Comparative study on stability of boron
doped diamond coated titanium and niobium electrodes, Diam. Relat. Mater. 93
(2019) 26–33. doi:10.1016/j.diamond.2019.01.010. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Journal of Environmental Chemical Engineering | |
dc.source | https://www.researchgate.net/publication/341534206_Evaluation_of_electrolytic_reactor_configuration_for_the_regeneration_of_granular_activated_carbon_saturated_with_methylene_blue | |
dc.subject | BDD | |
dc.subject | Adsorption | |
dc.subject | Electrolytic regeneration | |
dc.subject | Wastewater | |
dc.title | Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |