dc.creatorAcuña Bedoya, Jawer David
dc.creatorComas Cabrales, Jovannis Alexander
dc.creatorAlvarez Pugliese, Christian Eduardo
dc.creatorMarriaga-Cabrales, Nilson
dc.date2021-03-26T15:35:29Z
dc.date2021-03-26T15:35:29Z
dc.date2020-05-27
dc.date.accessioned2023-10-03T20:03:34Z
dc.date.available2023-10-03T20:03:34Z
dc.identifier22133437
dc.identifierhttps://hdl.handle.net/11323/8075
dc.identifierhttps://doi.org/10.1016/j.jece.2020.104074
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9174137
dc.descriptionThe performance of an electrochemical process for the regeneration of granular activated carbon (GAC) was evaluated using boron-doped diamond (BDD) anodes. Three different configurations were tested in the reactor: fluidized bed, packed bed with a divided cell and packed bed with an undivided cell. The GAC used was previously saturated with a synthetic solution of methylene blue (MB). The effects of three operational parameters were evaluated: current density, initial pH and reaction time, and NaCl as the electrolyte. Regeneration efficiencies (REs) of up to 76% ± 2 were achieved with a current density of 6 mA·cm-2 during 24 h of reaction, and a specific electric energy consumption of 1530 kWh ton-1 of GAC was obtained. The best results were obtained using the packed bed reactor with a divided cell and the GAC in the cathodic compartment. The present results were attributed to an improvement in the desorption caused by the local alkaline pH in the cathodic compartment, to the contribution of the electrochemical oxidation by the hydroxyl radical, and, in parallel, to the chemical oxidation of the organic compounds by the oxidizing species formed from the chloride ion. It was also found that the electrochemical regeneration process has a negative effect on the GAC integrity after three cycles of continuous regeneration
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] M.O. Omorogie, J.O. Babalola, E.I. Unuabonah, Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review, Desalin. Water Treat. 57 (2016) 518–544.
dc.relation[2] L. Wang, N. Balasubramanian, Electrochemical regeneration of granular activated carbon saturated with organic compounds, Chem. Eng. J. 155 (2009) 763–768. doi:10.1016/j.cej.2009.09.020.
dc.relation[3] X. Liu, G. Yu, W. Han, Granular activated carbon adsorption and microwave regeneration for the treatment of 2 , 4 , 5-trichlorobiphenyl in simulated soil-washing solution, 147 (2007) 746–751. doi:10.1016/j.jhazmat.2007.01.076
dc.relation[4] X. Quan, X.L. Ã, L. Bo, S. Chen, Y. Zhao, X. Cui, Regeneration of acid orange 7- exhausted granular activated carbons with microwave irradiation, 38 (2004) 4484– 4490. doi:10.1016/j.watres.2004.08.031.
dc.relation[5] J.-L. Lim, M. Okada, Regeneration of granular activated carbon using ultrasound., Ultrason. Sonochem. 12 (2005) 277–282. doi:10.1016/j.ultsonch.2004.02.003
dc.relation[6] P.M. Alvarez, F.J. Beltran, V. Gomez-Serrano, J. Jaramillo, E.M. Rodriguez, Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol, Water Res. 38 (2004) 2155–2165. doi:10.1016/j.watres.2004.01.030.
dc.relation[7] R.M. Narbaitz, A. Karimi‐ Jashni, Electrochemical regeneration of granular activated carbons loaded with phenol and natural organic matter, Environ. Technol. 30 (2009) 27–36. doi:10.1080/09593330802422803
dc.relation[8] I. Benhamed, L. Barthe, R. Kessas, C. Julcour, H. Delmas, Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation, Appl. Catal. B Environ. 187 (2016) 228–237. doi:10.1016/j.apcatb.2016.01.016.
dc.relation[9] D. Feng, H. Tan, J.S.J. Van Deventer, Ultrasonic elution of gold from activated Journal Pre-proof 26 carbon, Miner. Eng. 16 (2003) 257–264
dc.relation[10] K.Y. Foo, B.H. Hameed, Microwave-assisted regeneration of activated carbon, Bioresour. Technol. 119 (2012) 41–47. doi:10.1016/j.biortech.2012.05.061.
dc.relation[11] Q. Zhang, S. Cheng, H. Xia, L. Zhang, Removal of Congo red and methylene blue using H2O2 modified activated carbon by microwave regeneration: isotherm and kinetic studies, Mater. Res. Express. 6 (2019) 0–22.
dc.relation[12] Y. Sun, B. Zhang, T. Zheng, P. Wang, Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation, Chem. Eng. J. 320 (2017) 264–270. doi:10.1016/j.cej.2017.03.007.
dc.relation[13] M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S. Judd, Bio-regeneration of activated carbon: A comprehensive review, Sep. Purif. Technol. 197 (2018) 345– 359. doi:10.1016/j.seppur.2018.01.015.
dc.relation[14] Y. Zhang, D. Yang, P. Ning, Y. Li, S. Tian, J. Gu, Regeneration of Phenol-Saturated Activated Carbon by Supercritical Water: Effect of H2O2 and Alkali Metal Catalysts, J. Environ. Eng. (United States). 145 (2019) 1–10. doi:10.1061/(ASCE)EE.1943-7870.0001601
dc.relation[15] Y. Ito, I. Ushiki, Y. Sato, H. Inomata, Influence of Heat Treatment in Exhaust Treatment Process on Activated Carbon Regeneration using Supercritical Carbon Dioxide, KAGAKU KOGAKU RONBUNSHU. 45 (2019) 133–139. doi:10.1252/kakoronbunshu.45.133.
dc.relation[16] Q. Li, Y. Qi, C. Gao, Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Clean. Prod. 86 (2015) 424–431. doi:10.1016/j.jclepro.2014.08.008.
dc.relation[17] R.M. Narbaitz, A. Karimi-Jashni, Electrochemical reactivation of granular activated Journal Pre-proof 27 carbon: Impact of reactor configuration, Chem. Eng. J. 197 (2012) 414–423. doi:10.1016/j.cej.2012.05.049
dc.relation[18] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere. 65 (2006) 1197–1203. doi:10.1016/j.chemosphere.2006.03.054.
dc.relation[19] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós, E. Morallón, Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium, Carbon N. Y. 48 (2010) 2734–2745. doi:10.1016/j.carbon.2010.03.071.
dc.relation[20] M. Garcia-Oton, F. Montilla, M.A. Lillo-Rodenas, E. Morallón, J.L. Vazquez, Electrochemical Regeneration of Activated Carbon Saturated with Toluene, J. Appl. Electrochem. 35 (2005) 319–325. doi:10.1007/s10800-004-7470-3.
dc.relation[21] H. Zhang, Regeneration of exhausted activated carbon by electrochemical method, 85 (2002) 81–85. doi:https://doi.org/10.1016/S1385-8947(01)00176-0.
dc.relation[22] C.-H. Weng, M.-C. Hsu, Regeneration of granular activated carbon by an electrochemical process, Sep. Purif. Technol. 64 (2008) 227–236. doi:10.1016/j.seppur.2008.10.006.
dc.relation[23] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014)
dc.relation[24] D. Gandini, E. Mahé, P.A. Michaud, W. Haenni, A. Perret, C. Comninellis, Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment, J. Appl. Electrochem. 30 (2000) 1345–1350. doi:10.1023/A:1026526729357.
dc.relation[25] A.A. Najafpoor, M. Davoudi, E. Rahmanpour Salmani, Decolorization of synthetic textile wastewater using electrochemical cell divided by cellulosic separator, J. Environ. Heal. Sci. Eng. 15 (2017) 1–11. doi:10.1186/s40201-017-0273-3.
dc.relation[26] M.H. Zhou, L.C. Lei, Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor, Electrochim. Acta. 51 (2006) 4489–4496. doi:10.1016/j.electacta.2005.12.028.
dc.relation[27] R.M. Narbaitz, J. Cen, Alternative methods for determining the percentage regeneration of activated carbon, Water Res. 31 (1997) 2532–2542. doi:10.1016/S0043-1354(97)00085-7
dc.relation[28] T.C. An, X.H. Zhu, Y. Xiong, Feasibility study of photoelectrochemical degradation of methylene blue with three-dimensional electrode-photocatalytic reactor, Chemosphere. 46 (2002) 897–903. doi:10.1016/S0045-6535(01)00157-6.
dc.relation[29] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano, New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017) 1–8. doi:10.1016/j.seppur.2016.11.020.
dc.relation[30] C. a. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B Environ. 87 (2009) 105–145. doi:10.1016/j.apcatb.2008.09.017.
dc.relation[31] C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Three-dimensional electrochemical process for wastewater treatment: A general review, Chem. Eng. J. 228 (2013) 455–467. doi:10.1016/j.cej.2013.05.033 Review.
dc.relation[32] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016) 426–454. doi:10.1016/j.rser.2015.10.139.
dc.relation[33] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn ( OH ) 6 Photocatalyst for Methylene Blue Degradation : Electrolyte-Dependent Morphology and Performance, (2018) 10849–10856. doi:10.1002/slct.201802195.
dc.relation[34] F. Raposo, M.A. De La Rubia, R. Borja, Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size, J. Hazard. Mater. 165 (2009) 291–299. doi:10.1016/j.jhazmat.2008.09.106.
dc.relation[35] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience, John Wiley & Sons, New York, 1973. doi:10.1002/aic.690190245.
dc.relation[36] R. V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: A review, J. Hazard. Mater. 355 (2018) 34–49 doi:10.1016/j.jhazmat.2018.04.079
dc.relation[37] B. Liu, H. Cang, L. Cui, H. Zhang, Electrochemical polymerization of methylene blue on glassy carbon electrode, Int. J. Electrochem. Sci. 12 (2017) 9907–9913. doi:10.20964/2017.10.49
dc.relation[38] S. Wang, Z.H. Zhu, A. Coomes, F. Haghseresht, G.Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, 284 (2005) 440–446. doi:10.1016/j.jcis.2004.10.050
dc.relation[39] R.M. Narbaitz, J. Cen, Electrochemical regeneration of granular activated carbon, Water Res. 28 (1994) 1771–1778. doi:10.1016/0043-1354(94)90250-X
dc.relation[40] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical reactivation of granular activated carbon: pH dependence, J. Environ. Eng. Sci. 4 (2005) 187–194. doi:10.1139/s04-055.
dc.relation[41] A. Karimi-Jashni, R.M. Narbaitz, Electrochemical Reactivation of Granular Activated Carbon: Effect of Electrolyte Mixing, J. Environ. Eng. 131 (2005) 443– 449. doi:10.1061/(ASCE)0733-9372(2005)131:3(443).
dc.relation[42] C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199. doi:10.1016/j.diamond.2019.02.018
dc.relation[43] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013) 14251–14260. doi:10.1021/ie401571p.
dc.relation[44] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Applied Catalysis B : Environmental Electrochemical oxidation of ofloxacin using a TiO 2 -based kinetics and mass transfer impact, "Applied Catal. B, Environ. 203 (2017) 515–525. doi:10.1016/j.apcatb.2016.10.057.
dc.relation[45] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem. Commun. 100 (2019) 85–89. doi:10.1016/j.elecom.2019.01.025.
dc.relation[46] J. Zou, X. Peng, M. Li, Y. Xiong, B. Wang, F. Dong, B. Wang, Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption, Chemosphere. 171 (2017) 332–338. doi:10.1016/j.chemosphere.2016.12.065.
dc.relation[47] J. Muff, H. Jepsen, E. Søgaard, Bench-Scale Study of Electrochemical Oxidation for On-Site Treatment of Polluted Groundwater, J. Environ. Eng. 138 (2012) 915–922. Journal Pre-proof 31 doi:10.1061/(ASCE)EE.1943-7870.0000561.
dc.relation[48] P.J. Tauetsile, E.A. Oraby, J.J. Eksteen, Adsorption behaviour of copper and gold glycinates in alkaline media onto activated carbon. Part 1: Isotherms, Hydrometallurgy. 178 (2018) 202–208. doi:10.1016/j.hydromet.2018.04.015.
dc.relation[49] B. Karabacakoğlu, O. Savlak, Electrochemical Regeneration of Cr (VI) Saturated Granular and Powder Activated Carbon : Comparison of Regeneration Efficiency, Ind. Eng. Chem. Res. 53 (2014). doi:dx.doi.org/10.1021/ie500161d
dc.relation[50] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552–559. doi:10.1016/j.jhazmat.2009.05.057.
dc.relation[51] J.M.P.Q. Delgado, A critical review of dispersion in packed beds, Heat Mass Transf. Und Stoffuebertragung. 42 (2006) 279–310. doi:10.1007/s00231-005-0019-0.
dc.relation[52] N. ‐ W Han, J. Bhakta, R.G. Carbonell, Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution, AIChE J. 31 (1985) 277–288. doi:10.1002/aic.690310215
dc.relation[53] D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci. 60 (2005) 6947–6957. doi:10.1016/j.ces.2005.05.068.
dc.relation[54] Mintek, Energy efficient Minfurn TM for regeneration of activated carbon, (n.d.) 1. http://www.mintek.co.za/wp-content/uploads/2014/10/The-MinfurnTM-energyefficient-carbon-furnace-2014.pdf (accessed December 14, 2015).
dc.relation[55] S. Bradshaw, E. Van Wyk, J. De Swardt, Preliminary economic assessment of microwave regeneration of activated carbon for the carbon in pulp process, J. Microw. Power Electromagn. Energy. 32 (1997) 131–144. http://cat.inist.fr/?aModele=afficheN&cpsidt=10861378.
dc.relation[56] Condias, DIACHEM® DIAMOND ELECTRODES, (n.d.). https://condias.de/en/products/diachem/ (accessed January 26, 2020).
dc.relation[57] X.R. Lu, M.H. Ding, C. Zhang, W.Z. Tang, Comparative study on stability of boron doped diamond coated titanium and niobium electrodes, Diam. Relat. Mater. 93 (2019) 26–33. doi:10.1016/j.diamond.2019.01.010.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Environmental Chemical Engineering
dc.sourcehttps://www.researchgate.net/publication/341534206_Evaluation_of_electrolytic_reactor_configuration_for_the_regeneration_of_granular_activated_carbon_saturated_with_methylene_blue
dc.subjectBDD
dc.subjectAdsorption
dc.subjectElectrolytic regeneration
dc.subjectWastewater
dc.titleEvaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución