dc.creatorBuelvas Hernández, Ana
dc.creatorFajardo, Juan Gabriel
dc.creatorBarreto, Deibys
dc.creatorCarrillo Caballero, Gaylord Enrique
dc.creatorCardenas Escorcia, Yulineth
dc.creatorVidal Tovar, Carlos Ramón
dc.creatorGordon, Yimy
dc.date2021-10-04T16:41:38Z
dc.date2021-10-04T16:41:38Z
dc.date2021
dc.date.accessioned2023-10-03T19:50:36Z
dc.date.available2023-10-03T19:50:36Z
dc.identifier2214-157X
dc.identifierhttps://hdl.handle.net/11323/8773
dc.identifierhttps://doi.org/10.1016/j.csite.2021.101214
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9172562
dc.descriptionIn the refining and petrochemical industrial sector, large amounts of energy are used, so using the concept of exergy allows a rational use of this resource. In the different exergy and exergoeconomics studies applied in petrochemical plants, parameters of interest have been determined to evaluate the thermal efficiency, the potential for process improvement, the irreversibilities produced by the interaction between the components of the system and the operation of each one, and the energy costs associated with each of these irreversibilities. This paper presents an advanced exergy analysis and an exergy-economic analysis applied to a nitric acid production plant with an installed capacity of 350 metric tons per day, whose operating principle is based on the Ostwald method, and both the behavior of endogenous exergy destruction and the behavior of exogenous, avoidable and unavoidable exergy destruction are studied, exogenous, avoidable and unavoidable exergy destruction and the associated exergy costs in each of the heat transfer equipment and reactive equipment that make up the plant, about the cooling temperature in the intermediate stages of the compression train are studied using a mathematical model. The chemical reactions involved in the production process are the points of interest in the research of this work. Some of the results show that 54 % of the total exergy destruction can be recovered by intervening in the components. On the other hand, in the Catalytic Converter (CONV), it is convenient to consider the investment costs to reduce the exergy destruction costs. Similarly, in the Tail Gas Heater (TGH), it is beneficial to reduce the total investment to improve the process economics. On the other hand, the cost of exergy destruction of the plant resulted in 770.77 USD/h. In addition, it could be determined that the interactions between the components significantly affect the investment costs.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] K. Iftekhar, F. Alam y, Q. Alam, The global climate change and its effect on power generation, Energy Pol. (2013) 1460–1470.
dc.relation[2] R. Rivero, Application of the exergy concept in the petroleum refining and petrochemical industry, Energy Convers. Manag. 43 (2002) 1199–1220.
dc.relation[3] A. Valero, M.A. Lozano, M. Munoz, ˜ A General Theory of Exergy Saving I, II and III, ASME, New York, 1986.
dc.relation[4] A. Bejan, G. Tsatsaronis y, M. Moran, Thermal Designing and Optimization, New York, John Wiley & Sons, 1996.
dc.relation[5] P. Ifaei, A. Ataei y, C. Yoo, Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillersPart 2: thermoeconomic and environmental analysis, Energy Convers. Manag. 123 (2016) 625–642.
dc.relation[6] C. Yan, L. Lv, S. Wei, A. Eslamimanesh, W. Shen, Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant, Appl. Therm. Eng. 154 (2019) 637–649.
dc.relation[7] O.J. Odejobi, Exergy and economic analyses of crude oil distillation unit, Afr. J. Eng. Res. 3 (2015) 44–55.
dc.relation[8] K. Altayib, I. Dincer, Analysis and assessment of using an integrated solar energy-based system in a crude oil refinery, Appl. Therm. Eng. 159 (2019) 12.
dc.relation[9] Z. Nur Izyan y, M. Shuhaimi, Exergy analysis for fuel reduction strategies in crude distillation unit, Energy 66 (2014) 801–807.
dc.relation[10] D. Barreto, J. Fajardo y, J. Campillo, Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis, de ASME Int. Mechan. Eng. Congr. Exposit., Proc., Salt Lake City 6 (2019). Energy.
dc.relation[11] A. Buelvas, H. Valle y, J. Fajardo, Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant, de ASME 2018 Int. Mechan. Eng. Congr. Exposit., Pennsylvania 6B (2018). Energy.
dc.relation[12] L. Tock, F. Marechal, Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization, Energy 45 (2012) 339–349.
dc.relation[13] P. Caliandro, L. Tock, A.V. Ensinas, F. Marechal, Thermo-economic optimization of a solid oxide fuel cell- gas turbine system fuelled with gasified lignocellulosic biomass, Energy Convers. Manag. 85 (2014) 764–773.
dc.relation[14] D. Brown, M. Gassner, T. Fuchino, F. Mar´echal, Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems, Appl. Therm. Eng. 29 (2009) 2137–2152.
dc.relation[15] M. Rivarolo, B. D, M. A, A. Massardo, Hydro-methane and methanol combined production from hydroelectricity and biomass: thermo-economic analysis in Paraguay, Energy Convers. Manag. 79 (2014) 74–84.
dc.relation[16] G. Singh, P. Singh, V. Tyagi, P. Barnwal, A. Pandey, Exergy and thermo-economic analysis of ghee production plant in the dairy industry, Energy 167 (2019) 602–618.
dc.relation[17] A. Abusoglu, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 2 – Application, Appl. Therm. Eng. 29 (2009) 242–249.
dc.relation[18] X. Zhang, R. Zeng, K. Mu, X. Liu, X. Sun, H. Li, Exergectic and exergoeconomic evaluation of co-firing biomass with natural gas in CCHP system integrated with ground source heat pump, Energy Convers. Manag. 180 (2019) 622–640.
dc.relation[19] S. Seyyedi, M. Hashemi-Tilehnoee, M.A. Rosen, Exergy and exergoeconomic analyses of a novel integration of a 1000 MW pressurized water reactor power plant and a gas turbine cycle through a superheater, Ann. Nucl. Energy 115 (2018) 161–172.
dc.relation[20] L. Castellon, J. Fajardo, B. Sarria, Thermoeconomic analysis of wheat flour agroindustrial planta, in: Proceedings of the 15 the International Mechanical Engineering Congress and Exposition, Texas, Houston, 2015.
dc.relation[21] M. Bin Shams, E. Elkanzi, Z. Ramadhan, S. Rahma y, M. Khamis, Gas turbine inlet air cooling system for enhancing propane recovery in a gas plant: theorical and cost analyses, Nat. Gas Sci. Eng. (2017) 34.
dc.relation[22] M. Callak, F. Balkan, A. Hepbalsi, Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and heat recovery steam generator, Energy Convers. Manag. 98 (2015) 54–58.
dc.relation[23] H. Nami, A. Nemati, F.J. Fard, Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC), Appl. Therm. Eng. (2017) 46.
dc.relation[24] O. Balli, Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous, Appl. Therm. Eng. 111 (2017) 152–169.
dc.relation[25] M. Yari, S.M. Mahmoudi, M. Fallah, Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell, Energy 141 (2017) 1097–1112.
dc.relation[26] Z. Wang, W. Xion, D.S.-K. Ting, R. Carriveau, Z. Wang, Conventional and advanced exergy analyses of an underwater compressed air energy storage system, Appl. Energy 180 (2016) 810–822.
dc.relation[27] S. Fellaou, T. Bounahmidi, Analyzing thermodynamic improvement potential of a selected cement manufacturing process: advanced exergy analysis, Energy 154 (2018) 190–200.
dc.relation[28] A. Pazildar y, S. Sadrameli, Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant, Energy Convers. Manag. 138 (2017) 474–485.
dc.relation[29] A. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi, A. Vatani, Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas, Energy 168 (2019) 542–557.
dc.relation[30] M. Mehrpooya, H. Ansarinasab, Advanced exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes, J. Nat. Gas Sci. Eng. 26 (2015) 782–791.
dc.relation[31] M. Mehrpooya, S. Ali Mousavi, Advanced exergoeconomic assessment of a solar-driven Kalina cycle, Energy Convers. Manag. 178 (2018) 78–91.
dc.relation[32] H. Ansarinasab, M. Mehrpooya, M. Pouriman, Advanced exergoeconomic evaluation of a new cryogenic Helium recovery process from natural gas based on the flash separation - APCI modified process, Appl. Therm. Eng. 132 (5) (2017) 368–380.
dc.relation[33] D. Barreto, J. Fajardo, G. Carrillo y, Y. Cardenas, Advanced and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine, Energy Technol. 9 (2021) 16.
dc.relation[34] Y. Cengel, Termodinámica, Mexico, 2011.
dc.relation[35] S. Turn, An introduction to combustion concepts and application, 2000.
dc.relation[36] A. Buelvas, J. Fajardo y, H. Valle, Conventional and advanced exergoeconomic analysis in a nitric acid production plant, Int. Mechan. Eng. Congr. Exposit., Salt Lake City 6 (2020). Energy.
dc.relation[37] J. Egzergia Szargut, Poradnik obliczania I stosowania, Editor: widawnictwo politechniki shlaskej, Gliwice, 2007, 129 pages.
dc.relation[38] A. Abusoglu y, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered, Appl. Therm. Eng. 29 (2008) 234–241.
dc.relation[39] A. Bejan, G. Tsatsaronis y, M. Moran, Thermal Design & Optimization, JOHN WILEY & SONS, INC, Toronto, 1996.
dc.relation[40] L. Wang, Y. Yang, T. Morosuk y, G. Tsatsaronis, Advanced thermodynamic analysis and evaluation of a supercritical power plant, Energies 5 (2012) 1850–1863.
dc.relation[41] G. Tsatsaronis, K. Solange y, T. Morosuk, Endogenous and exogenous exergy destruction in thermal systems, in: Proceedings of International Mechanical Engineering Congress and Exposition-IMECE, vol. 2006, 2006, pp. 311–317.
dc.relation[42] G. Tsatsaronis y, M. Park, On Avoidable and unavoidable exergy destructions and investment costs in thermal systems, Energy Convers. Manag. 43 (2002) 1259–1270.
dc.relation[43] J. Couper, W. Penney, J. Fair y, S. Walas, Chemical Process Equipment: Selection and Design, Butterworth-Heinemann, 2010.
dc.relation[44] G. Towler y, R. Sinnott, Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design, Butterworth-Heinemann, 2013.
dc.relation[45] J. Fajardo, H. Valley, A. Buelvas, Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant, ASME Int. Mechan. Eng. Congr. Exposit., Pittsburgh 6B (2018). Energy.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceCase Studies in Thermal Engineering
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2214157X21003774
dc.subjectExergoconomy
dc.subjectEndogenous exergy
dc.subjectExogenous exergy
dc.subjectAvoidable exergy
dc.subjectInevitable exergy
dc.subjectExergo-economic indicators
dc.titleConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución