dc.creator | Caicedo, Nicolas | |
dc.creator | Caicedo, Juan M. | |
dc.creator | Oñate-Garzón, José | |
dc.date | 2022-12-27T21:16:40Z | |
dc.date | 2022-12-27T21:16:40Z | |
dc.date | 2022-07-07 | |
dc.date.accessioned | 2023-10-03T19:43:17Z | |
dc.date.available | 2023-10-03T19:43:17Z | |
dc.identifier | N. Caicedo, J. Caicedo y J. Oñate, “Identificación de Aminoácidos de Cadena Ramificada en Proteína de Quinua mediante Modelo de Regresión Lineal con Aprendizaje de Máquinas”, J. Comput. Electron. Sci.: Theory Appl., vol. 3, no. 2, pp. 24–32, 2022. https://doi.org/10.17981/cesta.03.02.2022.04 | |
dc.identifier | https://hdl.handle.net/11323/9728 | |
dc.identifier | 10.17981/cesta.03.02.2022.04 | |
dc.identifier | 2745-0090 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171754 | |
dc.description | La quinua, se clasifica como pseudocereal y contiene componentes bioactivos, tales como proteínas con un alto valor nutricional. El consumo de proteína y especialmente aminoácidos esenciales de cadena ramificada juegan un papel fundamental en la dieta, ya que favorece al mantenimiento de estructuras corporales | |
dc.description | Quinoa is classified as a pseudocereal and contains bioactive components, such as proteins with high nutritional value. The consumption of protein and especially branched-chain essential amino acids play a fundamental role in the diet, since it favors the maintenance of body structures | |
dc.format | 9 | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Colombia | |
dc.relation | Computer and Electronic Sciences: Theory and Applications - CESTA | |
dc.relation | A. Bojanic, Organización de las Naciones Unidad para la Alimentación y la Agricultura, La Quinua: Cultivo milenario para contribuir a la seguridad alimentaria mundial, STGO, CL: FAO/RLC, 2011. Disponible en https://www.fao.org/familyfarming/detail/es/c/326239/ | |
dc.relation | E. Soto, W. Mercado, R. Estrada, R. Repo, F. Díaz, F. ý G. Díaz, El mercado y la producción de quinua en el Perú. LI, PE: IICA/INIA, 2015. Disponible en http://repositorio.inia.gob.pe/handle/20.500.12955/1257 | |
dc.relation | M. Oliva, A. Duque y L. García-Alzate, “Caracterización fisicoquímica del cereal y almidón de Quinua Chenopodium quinua”, Rev Ion, vol. 31, no. 1, pp. 25–29, Sep. 2018. http://dx.doi.org/10.18273/revion.v31n1-2018004 | |
dc.relation | D. Ferrier, Bioquímica, 6 ed. PHL, USA: Lippincott Williams & Wilkin, 2014. [5] R. Rajendram, V. Preedy & V. Patel, Branched Chain Amino Acids in Clinical Nutrition, vol. 1. NY, USA: Humana Press, 2015. https://doi.org/10.1007/978-1-4939-1923-9 | |
dc.relation | D. Rojas, F. Figueras y S. Durán, “Ventajas y desventajas nutricionales de ser vegano o vegetariano”, Rev chil nutr, vol. 44, no. 3, pp. 218–225, 2017. Disponible en https://search.bvsalud.org/gim/resource/es/biblio-899824 | |
dc.relation | J. Physiol & K. Atherton, “Muscle protein synthesis in response to nutrition and exercise”, J Physiol, vol. 590, no. 5, pp. 1049–1057, Jan. 2012. https://doi.org/10.1113/jphysiol.2011.225003 | |
dc.relation | K. Smith, N. Reynolds, S. Downie, A. Patel & M. J. Rennie, “Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein,” Am J Physiol, vol. 275, no. 1, pp. E73–E78, Jul. 1998. https://doi.org/10.1152/ ajpendo.1998.275.1.E73 | |
dc.relation | M. S. Brook, P. Scaife, J. J. Bass, J. Cegielski, S. Watanabe, D. J. Wilkinson, K. Smith, B. E. Phillips & P. J. Atherton, “A collagen hydrolysate/milk protein-blend stimulates muscle anabolism equivalently to an isoenergetic milk protein-blend containing a greater quantity of essential amino acids in older men,” Clin Nutr, vol. 40, no. 6, pp. 4456–4464, Jun. 2021. https:// doi.org/10.1016/j.clnu.2021.01.002 | |
dc.relation | H. Hiraiwa, T. Okumura, T.Kondo, T. Kato, S. Kazama, T. Ishihara, E.Iwata, M. Shimojo, S. Kondo, S. Aoki, Y. Kanzaki, D. Tanimura, H. Sano, Y.Awaji, S. Yamada & T. Murohara, “Usefulness of the plasma branched-chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure,” J Cardiol, vol. 75, no. 6, pp. 689–696, Jan. 2020. https://doi.org/10.1016/j.jjcc.2019.12.016 | |
dc.relation | IBM Corporación, Regresión lineal, 2021, abril 13. [Online]. Disponible en https://www.ibm.com/co-es/analytics/learn/linearregression | |
dc.relation | R. Montero, “Modelos de regresión lineal múltiple”, Documentos de Trabajo en Economía Aplicada, 2016. Recuperado de https://www.ugr.es/~montero/matematicas/regresion_lineal.pdf | |
dc.relation | M. Gupta, “ML | Linear Regression”, Geeks for Geeks, 18 May. 2022. [Online]. Disponible en https://www.geeksforgeeks.org/ ml-linear-regression | |
dc.relation | Download FoodData Central Data, USDA, abril, 2022. [Online]. Disponible en https://fdc.nal.usda.gov/ | |
dc.relation | P. Vargas, R. Arteaga y L. Cruz, “Análisis bibliográfico sobre el potencial nutricional de la quinua (chenopodium quinoa) como alimento funcional”, Rev CAZ, vol. 46, no. 4, pp. 89–100. Dic. 2019. Disponible en http://centroazucar.uclv.edu.cu/index. php/centro_azucar/article/view/19 | |
dc.relation | D. Kirk, C. Catal & B. Tekinerdogan, “Precision nutrition: A systematic literature review,” Comp Biol Med, vol. 133, pp. 104365–104365, Jun. 2021. https://doi.org/10.1016/j.compbiomed.2021.104365 | |
dc.relation | G. K. Golla, J. A. Carlson, J. Huan, J. Kerr, T. Mitchell & K. Borner, “Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement”, presented at 2016 ICHI, IEEE, CH, IL, USA, 04-07 Oct. 2016, pp. 375–379. https://doi.org/10.1109/ICHI.2016.67 | |
dc.relation | J. Meerasri & R. Sothornvit, “Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes,” Case Stud Therm Eng, vol. 33, pp. 101942–101942, May. 2022. https://doi. org/10.1016/j.csite.2022.101942 | |
dc.relation | G. Çakmak & C. Yıldız, “The prediction of seedy grape drying rate using a neural network method”, Comput Electron Agric, vol. 75, no. 1, pp. 132–138, Jan. 2011. https://doi.org/10.1016/j.compag.2010.10.008 | |
dc.relation | V. Siy, V. Antonio, C. Siguin, N. Gordoncillo, J. Sescon, C. Go & E. Miro, “Predicting undernutrition among elementary schoolchildren in the Philippines using machine learning algorithms,” Nutrition, vol. 96, pp. 111571–111571, Apr. 2022. https://doi.org/10.1016/j.nut.2021.111571 | |
dc.relation | A. Antónov, “Valores nutricionales de alimentos y productos communes”, Kaggle, 2019, julio 18. Disponible en https://www. kaggle.com/datasets/trolukovich/nutritional-values-for-common-foods-and-products | |
dc.relation | A. Beklemysheva, “Why Use Python for AI and Machine Learning?”, Steel kiwi, 2022, enero. Disponible: https://steelkiwi. com/blog/python-for-ai-and-machine-learning/ | |
dc.relation | M. Silva, M. Ribeiro, O. Viegas, Z. Martins, M. Faria, S. Casal, E.Pinto, A. Almeida, O. Pinho & I. Ferreira, “Exploring two food composition databases to estimate nutritional components of whole meals,” J Food Compos Anal, vol. 102, no. 5, pp. 104070–104070, Sep. 2021. https://doi.org/10.1016/j.jfca.2021.104070 | |
dc.relation | V. Naoum, D. Kyriopoulos, A. Charonis, K. Athanasakis & J. Kyriopoulos, “The Pareto Principle ("80−20 Rule") In Healthcare Services In Greece,” Value Health, vol. 19, no. 7, pp. 18–18, 2016. https://doi.org/10.1016/j.jval.2016.09.1563 | |
dc.relation | P. Rattan, D. Penrice & D. Simonetto, “Artificial Intelligence and Machine Learning: What You Always Wanted to Know but Were Afraid to Ask,” Gastro Hep Advances, vol. 1, no. 1, pp 70–78, Nov. 2022. https://doi.org/10.1016/j.gastha.2021.11.001 | |
dc.relation | A. Banerji, “Gradient Descent in Linear Regression,” Analytics Vidhya, 2021, abril 19. Available: https://www.analyticsvidhya.com/blog/2021/04/gradient-descent-in-linear-regression/ | |
dc.relation | B. Gutiérrez & Gómez, “Scoping Review of Complexity Science in Dentistry,” Dent Hypotheses, vol. 12, no. 3, pp. 109–117, Nov. 2021. Available: http://www.dentalhypotheses.com/text.asp?2021/12/3/109/329758 | |
dc.relation | C. Gutiérrez, M. Lares, J. Sandoval y M. Hernández, “Aminoácidos de Cadena Ramificada”, Rev Dig Postgrado, vol. 9, no. 2, pp. 1–6, 2018. https://doi.org/10.37910/RDP.2020.9.2.e224 | |
dc.relation | G. R. Morantes-Quintana, G. R. Rincón-Polo & N. A. Pérez-Santodomingo, “Multiple linear regression model to estimate PM 1 concentration”, Rev Int Contam Ambie, vol. 35, no. 1, pp. 179–194, 2019. https://doi.org/10.20937/rica.2019.35.01.13 | |
dc.relation | 32 | |
dc.relation | 24 | |
dc.relation | 2 | |
dc.relation | 3 | |
dc.rights | Derechos de autor 2022 Nicolas Caicedo | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://revistascientificas.cuc.edu.co/CESTA/article/view/4196 | |
dc.subject | Aprendizaje de máquinas | |
dc.subject | Regresión lineal | |
dc.subject | Sklearn | |
dc.subject | Chenopodium quinua | |
dc.subject | Aminoácidos | |
dc.subject | Machine learning | |
dc.subject | Linear regression | |
dc.subject | Sklearn | |
dc.subject | Chenopodium quinoa | |
dc.subject | Amino acids | |
dc.title | Identificación de aminoácidos de cadena ramificada en proteína de quinua mediante modelo de regresión lineal con aprendizaje de máquinas | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |