dc.creatorCaicedo, Nicolas
dc.creatorCaicedo, Juan M.
dc.creatorOñate-Garzón, José
dc.date2022-12-27T21:16:40Z
dc.date2022-12-27T21:16:40Z
dc.date2022-07-07
dc.date.accessioned2023-10-03T19:43:17Z
dc.date.available2023-10-03T19:43:17Z
dc.identifierN. Caicedo, J. Caicedo y J. Oñate, “Identificación de Aminoácidos de Cadena Ramificada en Proteína de Quinua mediante Modelo de Regresión Lineal con Aprendizaje de Máquinas”, J. Comput. Electron. Sci.: Theory Appl., vol. 3, no. 2, pp. 24–32, 2022. https://doi.org/10.17981/cesta.03.02.2022.04
dc.identifierhttps://hdl.handle.net/11323/9728
dc.identifier10.17981/cesta.03.02.2022.04
dc.identifier2745-0090
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171754
dc.descriptionLa quinua, se clasifica como pseudocereal y contiene componentes bioactivos, tales como proteínas con un alto valor nutricional. El consumo de proteína y especialmente aminoácidos esenciales de cadena ramificada juegan un papel fundamental en la dieta, ya que favorece al mantenimiento de estructuras corporales
dc.descriptionQuinoa is classified as a pseudocereal and contains bioactive components, such as proteins with high nutritional value. The consumption of protein and especially branched-chain essential amino acids play a fundamental role in the diet, since it favors the maintenance of body structures
dc.format9
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherColombia
dc.relationComputer and Electronic Sciences: Theory and Applications - CESTA
dc.relationA. Bojanic, Organización de las Naciones Unidad para la Alimentación y la Agricultura, La Quinua: Cultivo milenario para contribuir a la seguridad alimentaria mundial, STGO, CL: FAO/RLC, 2011. Disponible en https://www.fao.org/familyfarming/detail/es/c/326239/
dc.relationE. Soto, W. Mercado, R. Estrada, R. Repo, F. Díaz, F. ý G. Díaz, El mercado y la producción de quinua en el Perú. LI, PE: IICA/INIA, 2015. Disponible en http://repositorio.inia.gob.pe/handle/20.500.12955/1257
dc.relationM. Oliva, A. Duque y L. García-Alzate, “Caracterización fisicoquímica del cereal y almidón de Quinua Chenopodium quinua”, Rev Ion, vol. 31, no. 1, pp. 25–29, Sep. 2018. http://dx.doi.org/10.18273/revion.v31n1-2018004
dc.relationD. Ferrier, Bioquímica, 6 ed. PHL, USA: Lippincott Williams & Wilkin, 2014. [5] R. Rajendram, V. Preedy & V. Patel, Branched Chain Amino Acids in Clinical Nutrition, vol. 1. NY, USA: Humana Press, 2015. https://doi.org/10.1007/978-1-4939-1923-9
dc.relationD. Rojas, F. Figueras y S. Durán, “Ventajas y desventajas nutricionales de ser vegano o vegetariano”, Rev chil nutr, vol. 44, no. 3, pp. 218–225, 2017. Disponible en https://search.bvsalud.org/gim/resource/es/biblio-899824
dc.relationJ. Physiol & K. Atherton, “Muscle protein synthesis in response to nutrition and exercise”, J Physiol, vol. 590, no. 5, pp. 1049–1057, Jan. 2012. https://doi.org/10.1113/jphysiol.2011.225003
dc.relationK. Smith, N. Reynolds, S. Downie, A. Patel & M. J. Rennie, “Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein,” Am J Physiol, vol. 275, no. 1, pp. E73–E78, Jul. 1998. https://doi.org/10.1152/ ajpendo.1998.275.1.E73
dc.relationM. S. Brook, P. Scaife, J. J. Bass, J. Cegielski, S. Watanabe, D. J. Wilkinson, K. Smith, B. E. Phillips & P. J. Atherton, “A collagen hydrolysate/milk protein-blend stimulates muscle anabolism equivalently to an isoenergetic milk protein-blend containing a greater quantity of essential amino acids in older men,” Clin Nutr, vol. 40, no. 6, pp. 4456–4464, Jun. 2021. https:// doi.org/10.1016/j.clnu.2021.01.002
dc.relationH. Hiraiwa, T. Okumura, T.Kondo, T. Kato, S. Kazama, T. Ishihara, E.Iwata, M. Shimojo, S. Kondo, S. Aoki, Y. Kanzaki, D. Tanimura, H. Sano, Y.Awaji, S. Yamada & T. Murohara, “Usefulness of the plasma branched-chain amino acid/aromatic amino acid ratio for predicting future cardiac events in patients with heart failure,” J Cardiol, vol. 75, no. 6, pp. 689–696, Jan. 2020. https://doi.org/10.1016/j.jjcc.2019.12.016
dc.relationIBM Corporación, Regresión lineal, 2021, abril 13. [Online]. Disponible en https://www.ibm.com/co-es/analytics/learn/linearregression
dc.relationR. Montero, “Modelos de regresión lineal múltiple”, Documentos de Trabajo en Economía Aplicada, 2016. Recuperado de https://www.ugr.es/~montero/matematicas/regresion_lineal.pdf
dc.relationM. Gupta, “ML | Linear Regression”, Geeks for Geeks, 18 May. 2022. [Online]. Disponible en https://www.geeksforgeeks.org/ ml-linear-regression
dc.relationDownload FoodData Central Data, USDA, abril, 2022. [Online]. Disponible en https://fdc.nal.usda.gov/
dc.relationP. Vargas, R. Arteaga y L. Cruz, “Análisis bibliográfico sobre el potencial nutricional de la quinua (chenopodium quinoa) como alimento funcional”, Rev CAZ, vol. 46, no. 4, pp. 89–100. Dic. 2019. Disponible en http://centroazucar.uclv.edu.cu/index. php/centro_azucar/article/view/19
dc.relationD. Kirk, C. Catal & B. Tekinerdogan, “Precision nutrition: A systematic literature review,” Comp Biol Med, vol. 133, pp. 104365–104365, Jun. 2021. https://doi.org/10.1016/j.compbiomed.2021.104365
dc.relationG. K. Golla, J. A. Carlson, J. Huan, J. Kerr, T. Mitchell & K. Borner, “Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement”, presented at 2016 ICHI, IEEE, CH, IL, USA, 04-07 Oct. 2016, pp. 375–379. https://doi.org/10.1109/ICHI.2016.67
dc.relationJ. Meerasri & R. Sothornvit, “Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes,” Case Stud Therm Eng, vol. 33, pp. 101942–101942, May. 2022. https://doi. org/10.1016/j.csite.2022.101942
dc.relationG. Çakmak & C. Yıldız, “The prediction of seedy grape drying rate using a neural network method”, Comput Electron Agric, vol. 75, no. 1, pp. 132–138, Jan. 2011. https://doi.org/10.1016/j.compag.2010.10.008
dc.relationV. Siy, V. Antonio, C. Siguin, N. Gordoncillo, J. Sescon, C. Go & E. Miro, “Predicting undernutrition among elementary schoolchildren in the Philippines using machine learning algorithms,” Nutrition, vol. 96, pp. 111571–111571, Apr. 2022. https://doi.org/10.1016/j.nut.2021.111571
dc.relationA. Antónov, “Valores nutricionales de alimentos y productos communes”, Kaggle, 2019, julio 18. Disponible en https://www. kaggle.com/datasets/trolukovich/nutritional-values-for-common-foods-and-products
dc.relationA. Beklemysheva, “Why Use Python for AI and Machine Learning?”, Steel kiwi, 2022, enero. Disponible: https://steelkiwi. com/blog/python-for-ai-and-machine-learning/
dc.relationM. Silva, M. Ribeiro, O. Viegas, Z. Martins, M. Faria, S. Casal, E.Pinto, A. Almeida, O. Pinho & I. Ferreira, “Exploring two food composition databases to estimate nutritional components of whole meals,” J Food Compos Anal, vol. 102, no. 5, pp. 104070–104070, Sep. 2021. https://doi.org/10.1016/j.jfca.2021.104070
dc.relationV. Naoum, D. Kyriopoulos, A. Charonis, K. Athanasakis & J. Kyriopoulos, “The Pareto Principle ("80−20 Rule") In Healthcare Services In Greece,” Value Health, vol. 19, no. 7, pp. 18–18, 2016. https://doi.org/10.1016/j.jval.2016.09.1563
dc.relationP. Rattan, D. Penrice & D. Simonetto, “Artificial Intelligence and Machine Learning: What You Always Wanted to Know but Were Afraid to Ask,” Gastro Hep Advances, vol. 1, no. 1, pp 70–78, Nov. 2022. https://doi.org/10.1016/j.gastha.2021.11.001
dc.relationA. Banerji, “Gradient Descent in Linear Regression,” Analytics Vidhya, 2021, abril 19. Available: https://www.analyticsvidhya.com/blog/2021/04/gradient-descent-in-linear-regression/
dc.relationB. Gutiérrez & Gómez, “Scoping Review of Complexity Science in Dentistry,” Dent Hypotheses, vol. 12, no. 3, pp. 109–117, Nov. 2021. Available: http://www.dentalhypotheses.com/text.asp?2021/12/3/109/329758
dc.relationC. Gutiérrez, M. Lares, J. Sandoval y M. Hernández, “Aminoácidos de Cadena Ramificada”, Rev Dig Postgrado, vol. 9, no. 2, pp. 1–6, 2018. https://doi.org/10.37910/RDP.2020.9.2.e224
dc.relationG. R. Morantes-Quintana, G. R. Rincón-Polo & N. A. Pérez-Santodomingo, “Multiple linear regression model to estimate PM 1 concentration”, Rev Int Contam Ambie, vol. 35, no. 1, pp. 179–194, 2019. https://doi.org/10.20937/rica.2019.35.01.13
dc.relation32
dc.relation24
dc.relation2
dc.relation3
dc.rightsDerechos de autor 2022 Nicolas Caicedo
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://revistascientificas.cuc.edu.co/CESTA/article/view/4196
dc.subjectAprendizaje de máquinas
dc.subjectRegresión lineal
dc.subjectSklearn
dc.subjectChenopodium quinua
dc.subjectAminoácidos
dc.subjectMachine learning
dc.subjectLinear regression
dc.subjectSklearn
dc.subjectChenopodium quinoa
dc.subjectAmino acids
dc.titleIdentificación de aminoácidos de cadena ramificada en proteína de quinua mediante modelo de regresión lineal con aprendizaje de máquinas
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución