dc.creatorDe la Hoz Correa, Eduardo Miguel
dc.creatorDe la Hoz, Emiro
dc.creatorOrtiz, Andrés
dc.creatorOrtega, Julio
dc.creatorPrieto, Beatriz
dc.date2018-11-14T21:20:38Z
dc.date2018-11-14T21:20:38Z
dc.date2015
dc.date.accessioned2023-10-03T19:40:42Z
dc.date.available2023-10-03T19:40:42Z
dc.identifier0925-2312
dc.identifierhttp://hdl.handle.net/11323/1011
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171339
dc.descriptionThe growth of the Internet and, consequently, the number of interconnected computers, has exposed significant amounts of information to intruders and attackers. Firewalls aim to detect violations according to a predefined rule-set and usually block potentially dangerous incoming traffic. However, with the evolution of attack techniques, it is more difficult to distinguish anomalies from normal traffic. Different detection approaches have been proposed, including the use of machine learning techniques based on neural models such as Self-Organizing Maps (SOMs). In this paper, we present a classification approach that hybridizes statistical techniques and SOM for network anomaly detection. Thus, while Principal Component Analysis (PCA) and Fisher Discriminant Ratio (FDR) have been considered for feature selection and noise removal, Probabilistic Self-Organizing Maps (PSOM) aim to model the feature space and enable distinguishing between normal and anomalous connections.
dc.formatapplication/pdf
dc.languageeng
dc.publisherNeurocomputing
dc.rightsAtribución – No comercial – Compartir igual
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceNeurocomputing
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S0925231215002982
dc.subjectBayesian SOM
dc.subjectIDS
dc.subjectPCA filtering
dc.subjectProbabilistic SOM
dc.subjectSelf-organizing maps
dc.titlePCA filtering and probabilistic SOM for network intrusion detection
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución