dc.creator | Moreno Rocha, Christian Manuel | |
dc.creator | Milanés Batista, Celene | |
dc.creator | Arguello Rodríguez, Willian Fernando | |
dc.creator | Fontalvo Ballesteros, Arley Jesús | |
dc.creator | Núñez Álvarez, José Ricardo | |
dc.date | 2023-01-30T14:46:39Z | |
dc.date | 2023-01-30T14:46:39Z | |
dc.date | 2022-10 | |
dc.date.accessioned | 2023-10-03T19:30:58Z | |
dc.date.available | 2023-10-03T19:30:58Z | |
dc.identifier | 2088-8708 | |
dc.identifier | https://hdl.handle.net/11323/9845 | |
dc.identifier | 10.11591/ijece.v12i5.pp4521-4528 | |
dc.identifier | 2722-2578 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170333 | |
dc.description | This article quantifies the development of photovoltaic solar energy in Colombia and its current development prospects. The high demand for electricity in Colombia is increasing since there is a large population, industrial, and business increase, which brings a higher energy consumption and consequently economic, social, and environmental problems. Faced with this situation, a possible solution is proposed, using solar energy, to supply the increase in demand and mitigate the problems caused by current electricity generation because Colombia has high levels of solar radiation in almost the entire territory. The objective of this research is based on the analysis of the behavior of the projects on photovoltaic solar systems presented to the mining-energy planning unit (UPME) in the last 14 years until September 30, 2020, as well such as the study of the areas with the most effective implementation of this technology and their respective radiation indices. In addition, a synthesis is made of the regulations, laws, and tax incentives that exist for the implementation of this technology and the different stages of execution of the projects approved and in performance. | |
dc.format | 8 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Institute of Advanced Engineering and Science (IAES) | |
dc.publisher | Indonesia | |
dc.relation | International Journal of Electrical and Computer Engineering (IJECE) | |
dc.relation | [1] J. Hernández, E. Sáenz, and W. Vallejo, “Study of the solar resource in the City of Bogotá for the design of residential interconnected photovoltaic systems,” Revista Colombiana de Física, vol. 42, no. 2, Apr. 2010, doi:
10.1016/j.renene.2019.10.066. | |
dc.relation | [2] E. D. Obando, S. X. Carvajal, and J. Pineda Agudelo, “Solar radiation prediction using machine learning techniques: A review,” IEEE Latin America Transactions, vol. 17, no. 04, pp. 684–697, Apr. 2019, doi: 10.1109/TLA.2019.8891934. | |
dc.relation | [3] E. V. Mendoza Merchán, M. D. V. Gutiérrez, D. A. M. Montenegro, J. R. Nuñez Alvarez, and J. W. G. Guerrero, “An analysis of electricity generation with renewable resources in Germany,” International Journal of Energy Economics and Policy, vol. 10, no. 5, pp. 361–367, Aug. 2020, doi: 10.32479/ijeep.9369. | |
dc.relation | [4] E. F. Cantillo and F. Conde, “Commercial and technical diagnosis of photovoltaic sector at Colombian Caribbean region,” Prospectiva, vol. 9, no. 2, pp. 81–88, 2011. | |
dc.relation | [5] A. R. López et al., “Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market,” Renewable Energy, vol. 148, pp. 1266–1279, Apr. 2020, doi: 10.1016/j.renene.2019.10.066. | |
dc.relation | [6] L. M. López-Ochoa, K. Verichev, J. Las-Heras-Casas, and M. Carpio, “Dataset on solar contributions by thermal solar systems in Chile applying Chilean and Spanish regulations,” Data in Brief, vol. 26, Oct. 2019, doi: 10.1016/j.dib.2019.104505. | |
dc.relation | [7] L. Dusonchet and E. Telaretti, “Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in western European Union countries,” Energy Policy, vol. 38, no. 7, pp. 3297–3308, Jul. 2010, doi: 10.1016/j.enpol.2010.01.053. | |
dc.relation | [8] H. Zsiborács, G. Pintér, A. Vincze, Z. Birkner, and N. H. Baranyai, “Grid balancing challenges illustrated by two European examples: Interactions of electric grids, photovoltaic power generation, energy storage and power generation forecasting,” Energy Reports, vol. 7, pp. 3805–3818, Nov. 2021, doi: 10.1016/j.egyr.2021.06.007. | |
dc.relation | [9] J. Ordóñez, E. Jadraque, J. Alegre, and G. Martínez, “Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain),” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 2122–2130, Sep. 2010, doi:10.1016/j.rser.2010.01.001. | |
dc.relation | [10] S. Shamshirband, T. Rabczuk, and K.-W. Chau, “A survey of deep learning techniques: application in wind and solar energy resources,” IEEE Access, vol. 7, pp. 164650–164666, 2019, doi:0.1109/ACCESS.2019.2951750. | |
dc.relation | [11] H. González-Acevedo, Y. Muñoz-Maldonado, A. Ospino-Castro, J. Serrano, A. Atencio, and C. J. Saavedra, “Design and performance evaluation of a solar tracking panel of single axis in Colombia,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, pp. 2889–2898, Aug. 2021, doi: 10.11591/ijece.v11i4.pp2889-2898. | |
dc.relation | [12] G. V. Ochoa, J. N. Alvarez, and C. Acevedo, “Research evolution on renewable energies resources from 2007 to 2017: A comparative study on solar, geothermal, wind and biomass energy,” International Journal of Energy Economics and Policy, vol. 9, no. 6, pp. 242–253, Oct. 2019, doi: 10.32479/ijeep.8051. | |
dc.relation | [13] G. Carvajal-Romo, M. Valderrama-Mendoza, D. Rodríguez-Urrego, and L. Rodríguez-Urrego, “Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects,” Sustainable Energy Technologies and Assessments, vol. 36, Dec. 2019, doi: 10.1016/j.seta.2019.100531. | |
dc.relation | [14] D. Rodríguez-Urrego and L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 160–170, Sep. 2018, doi: 10.1016/j.rser.2018.04.065. | |
dc.relation | [15] A. Vides-Prado et al., “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 4245–4255, Feb. 2018, doi: 10.1016/j.rser.2017.05.101. | |
dc.relation | [16] J. Quevedo, J. Ruiz, and D. Gonzalez, “Analysis of a photovoltaic solar installation in accordance to performance parameters of IEC61724,” in 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), Dec. 2019, pp. 1–6, doi: 10.1109/FISECIGRE48012.2019.8984950. | |
dc.relation | [17] UPME and BID, “Integration of non-conventional renewable energies in Colombia,” Convenio ATN/FM-12825-CO, 2015. | |
dc.relation | [18] K. Palomino, F. Reyes, J. Núñez, G. Valencia, and R. H. Acosta, “Wind speed prediction based on Univariate ARIMA and OLS on the Colombian caribbean coast,” Journal of Engineering Science and Technology Review, vol. 13, no. 3, pp. 200–205, 2020, doi: 10.25103/jestr.133.22. | |
dc.relation | [19] O. C. Silvera, M. V. Chamorro, and G. V. Ochoa, “Wind and solar resource assessment and prediction using artificial neural network and semi-empirical model: case study of the Colombian caribbean region,” Heliyon, vol. 7, no. 9, Sep. 2021, doi: 10.1016/j.heliyon.2021.e07959. | |
dc.relation | [20] UPME, “Electricity generation project records report,” Ministerio de Minas y Energías, Colombia, 2020. | |
dc.relation | [21] A. M. Aguirre-Mendoza, C. Díaz-Mendoza, and J. Pasqualino, “Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia,” Ecological Engineering, vol. 130, pp. 252–262, May 2019, doi: 10.1016/j.ecoleng.2017.08.020. | |
dc.relation | [22] B. Espinar et al., “Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations,” Solar Energy, vol. 83, no. 1, pp. 118–125, Jan. 2009, doi: 10.1016/j.solener.2008.07.009. | |
dc.relation | [23] I. Pagola, M. Gastón, A. Bernardos, and C. Fernández-Peruchena, “A combination of heliosat-1 and heliosat-2 methods for deriving solar radiation from satellite images,” Energy Procedia, vol. 57, pp. 1037–1043, 2014, doi:
10.1016/j.egypro.2014.10.088. | |
dc.relation | [24] A. Saavedra, N. A. Galvis, M. Castaneda, S. Zapata, F. Mesa, and A. J. Aristizábal, “Feasibility of using photovoltaic solar energy for water treatment plants,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 1962–1968, Jun. 2021, doi: 10.11591/ijece.v11i3.pp1962-1968. | |
dc.relation | [25] L. M. Cardenas, C. J. Franco, and I. Dyner, “Assessing emissions–mitigation energy policy under integrated supply and demand analysis: the Colombian case,” Journal of Cleaner Production, vol. 112, pp. 3759–3773, Jan. 2016, doi: 10.1016/j.jclepro.2015.08.089. | |
dc.relation | [26] J. Arias-Gaviria, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia,” Renewable Energy, vol. 139, pp. 1111–1119, Aug. 2019, doi: 10.1016/j.renene.2019.02.138. | |
dc.relation | [27] E. Mendoza, P. Fuentes, I. Benítez, D. Reina, and J. Núñez, “Network of multi-hop wireless sensors for low cost and extended area home automation systems,” Revista Iberoamericana de Automática e Informática industrial, vol. 17, no. 4, pp. 412–423, Sep. 2020, doi: 10.4995/riai.2020.12301. | |
dc.relation | [28] J. R. Nuñez et al., “Design of a fuzzy controller for a hybrid generation system,” IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1, May 2020, doi: 10.1088/1757-899X/844/1/012017. | |
dc.relation | [29] A. Perez and J. J. Garcia-Rendon, “Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia,” Renewable Energy, vol. 167, pp. 146–161, Apr. 2021, doi: 10.1016/j.renene.2020.11.067. | |
dc.relation | [30] J. R. Nunez Alvarez, I. F. Benitez Pina, A. Rodriguez Martinez, S. Diaz Perez, and D. Luiz de Oliveira, “Tools for the Implementation of a SCADA System in a Desalination Process,” IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858–1864, Nov. 2019, doi: 10.1109/TLA.2019.8986424. | |
dc.relation | 4528 | |
dc.relation | 4521 | |
dc.relation | 5 | |
dc.relation | 12 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Environmental problem | |
dc.subject | Photovoltaic solar system | |
dc.subject | Renewable energy | |
dc.subject | Solar energy projects | |
dc.subject | Solar energy | |
dc.title | Challenges and perspectives of the use of photovoltaic solar energy in Colombia | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.coverage | Colombia | |