Optimal design of truss structures using water wave optimization

dc.creatorMillán Páramo, Carlos
dc.date2019-02-13T21:39:46Z
dc.date2019-02-13T21:39:46Z
dc.date2017-07-01
dc.date.accessioned2023-10-03T19:27:55Z
dc.date.available2023-10-03T19:27:55Z
dc.identifierC. Millán Páramo, “Diseño óptimo de armaduras empleando optimización con ondas del agua,” INGE CUC, vol. 13, no. 2, pp. 102-111, 2017. DOI: http://doi.org/10.17981/ingecuc.13.2.2017.11
dc.identifierhttp://hdl.handle.net/11323/2466
dc.identifierhttps://doi.org/10.17981/ingecuc.13.2.2017.11
dc.identifier10.17981/ingecuc.13.2.2017.11
dc.identifier2382-4700
dc.identifierCorporación Universidad de la Costa
dc.identifier0122-6517
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170226
dc.descriptionIntroducción: En los últimos años, la importancia de los aspectos económicos en el campo de las estructuras ha motivado a muchos investigadores a emplear nuevos métodos para minimizar el peso de las estructuras. El objetivo principal de la optimización estructural (diseño óptimo) es minimizar el peso de las estructuras al tiempo que se satisfacen todos los requerimientos impuestos por los códigos de diseño.Objetivo: En este estudio, el algoritmo Optimización con Ondas del Agua (Water Wave Optimization - WWO), es implementado para resolver el problema de optimización estructural de armaduras en 2D y 3D.Metodología: El estudio está compuesto por tres fases principales: 1) formulación del problema de optimización estructural; 2) estudio de los fundamentos y parámetros que controlan al algoritmo WWO y 3) evaluar el desempeño del WWO en problemas optimización de armaduras reportadas en la literatura especializada.Resultados: Los valores de peso, peso promedio, desviación estándar y número total de análisis ejecutados para converger al diseño óptimo conseguidos con WWO indican que el algoritmo es una buena herramienta para minimizar el peso de armaduras sujetas a restricciones de esfuerzo y desplazamientos.Conclusiones: Se observó que el algoritmo WWO es eficaz, eficiente y robusto, para resolver diversos tipos de problemas, con diferentes números de elementos. Además, WWO requiere menor número de análisis para converger al diseño óptimo en comparación con otros algoritmos
dc.descriptionIntroduction−In recent years, the importance of economic considerations in the field of structures has motivated many researchers to employ new meth-ods for minimizing the weight of the structures. The main goal of the struc-tural optimization is to minimize the weight of structures while satisfying all design requirements imposed by design codes.Objective−In this study, the Water Wave Optimization (WWO) algorithm is implemented to solve the problem of structural optimization of 2D and 3D truss structures.Methodology−The study is composed of three main phases: 1) formulation of the structural optimization problem; 2) study of the fundamentals and param-eters that control the WWO algorithm and 3) evaluate the WWO performance in optimization problems of truss structures reported in the specialized lit-erature.Results− The values of weight, average weight, standard deviation and the total number of analyses executed to converge to the optimum design obtained with WWO indicate that the algorithm is a good tool to minimize the weight of truss structures subject to stress and displacements constrained. Conclusions− It was observed that the WWO algorithm is effectively, effciently and robust to solve different types of problems, with different num-bers of elements. Furthermore, WWO requires a lower number of analyses to converge to the optimum design compared to other algorithms
dc.format10 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.relationINGE CUC; Vol. 13, Núm. 2 (2017)
dc.relationINGE CUC
dc.relationINGE CUC
dc.relation[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated Annealing," Science 80, vol. 220, no. 4598, pp. 671–680, 1983, DOI: https://doi.org/10.1126/science.220.4598.671
dc.relation[2] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A New Heuristic Optimization Algorithm: Harmony Search," Simulation, vol. 76, no. 2, pp. 60–68, 2001, DOI: https://doi.org/10.1177/003754970107600201
dc.relation[3] J. H. Holland, "Adaptation in Natural and Artificial Systems," Ann Arbor MI Univ. Michigan Press, vol. Ann Arbor, p. 183, 1975, DOI: https://doi.org/10.1137/1018105
dc.relation[4] X.-S. Yang and S. Deb, "Cuckoo search: recent advances and applications," Neural Comput. Appl., vol. 24, no. 1, pp. 169–174, 2014, DOI: https://doi.org/10.1007/s00521-013-1367-1
dc.relation[5] J. Kennedy and R. Eberhart, "Particle swarm optimization," 1995 IEEE Int. Conf. Neural Networks (ICNN 95), vol. 4, pp. 1942–1948, 1995, DOI: https://doi.org/10.1109/ICNN.1995.488968
dc.relation[6] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Trans. Syst. Man Cybern. Part B, vol. 26, no. 1, pp. 29– 41, 1996, DOI: https://doi.org/10.1109/3477.484436
dc.relation[7] F. Erbatur, O. Hasançebi, İ. Tütüncü, and H. Kılıç, "Optimal design of planar and space structures with genetic algorithms," Comput. Struct., vol. 75, no. 2, pp. 209–224, 2000, DOI: https://doi.org/10.1016/S0045-7949(99)00084-X
dc.relation[8] J. F. Schutte and A. A. Groenwold, "Sizing design of truss structures using particle swarms," Struct. Multidiscip. Optim., vol. 25, no. 4, pp. 261–269, oct. 2003, DOI: https://doi.org/10.1007/s00158-003-0316-5
dc.relation[9] C. V. Camp and B. J. Bichon, "Design of Space Trusses Using Ant Colony Optimization," J. Struct. Eng., vol. 130, no. 5, pp. 741–751, 2004, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:5(741)
dc.relation[10] K. S. Lee and Z. W. Geem, "A new structural optimization method based on the harmony search algorithm," Comput. Struct., vol. 82, no. 9–10, pp. 781–798, 2004, DOI: https://doi.org/10.1016/j.compstruc.2004.01.002
dc.relation[11] K. S. Lee and Z. W. Geem, "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice," Comput. Methods Appl. Mech. Eng., vol. 194, no. 36–38, pp. 3902–3933, 2005, DOI: https://doi.org/10.1016/j.cma.2004.09.007
dc.relation[12] O. K. Erol and I. Eksin, "A new optimization method: Big Bang–Big Crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006, DOI: https://doi.org/10.1016/j.advengsoft.2005.04.005
dc.relation[13] C. V. Camp, "Design of Space Trusses Using Big Bang– Big Crunch Optimization," J. Struct. Eng., vol. 133, no. 7, pp. 999–1008, 2007, DOI: https://doi.org/10.1061/(ASCE)0733-9445(2007)133:7(999)
dc.relation[14] L. J. Li, Z. B. Huang, F. Liu, and Q. H. Wu, "A heuristic particle swarm optimizer for optimization of pin connected structures," Comput. Struct., vol. 85, no. 7–8, pp. 340–349, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.11.020
dc.relation[15] R. E. Perez and K. Behdinan, "Particle swarm approach for structural design optimization," Comput. Struct., vol. 85, no. 19–20, pp. 1579–1588, 2007, DOI: https://doi.org/10.1016/j.compstruc.2006.10.013
dc.relation[16] L. Lamberti, "An efficient simulated annealing algorithm for design optimization of truss structures," Comput.Struct., vol. 86, no. 19–20, pp. 1936–1953, 2008, DOI: https://doi.org/10.1016/j.compstruc.2008.02.004
dc.relation[17] A. Kaveh and S. Talatahari, "Size optimization of space trusses using Big Bang–Big Crunch algorithm," Comput. Struct., vol. 87, no. 17–18, pp. 1129–1140, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.04.011
dc.relation[18] A. Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Comput. Struct., vol. 87, no. 5–6, pp. 267–283, 2009, DOI: https://doi.org/10.1016/j.compstruc.2009.01.003
dc.relation[19] A. Kaveh and S. Talatahari, "A particle swarm ant colony optimization for truss structures with discrete variables," J. Constr. Steel Res., vol. 65, no. 8–9, pp. 1558–1568, 2009, DOI: https://doi.org/10.1016/j.jcsr.2009.04.021
dc.relation[20] M. Sonmez, "Artificial Bee Colony algorithm for optimization of truss structures," Appl. Soft Comput., vol. 11, no. 2, pp. 2406–2418, 2011, DOI: https://doi.org/10.1016/j.asoc.2010.09.003
dc.relation[21] S. O. Degertekin, "Improved harmony search algorithms for sizing optimization of truss structures," Comput. Struct., vol. 92–93, pp. 229–241, 2012, DOI: https://doi.org/10.1016/j.compstruc.2011.10.022
dc.relation[22] S. O. Degertekin and M. S. Hayalioglu, "Sizing truss structures using teaching-learning-based optimization," Comput. Struct., vol. 119, pp. 177–188, 2013, DOI: https://doi.org/10.1016/j.compstruc.2012.12.011
dc.relation[23] C. V. Camp and M. Farshchin, "Design of space trusses using modified teaching-learning based optimization," Eng. Struct., vol. 62–63, pp. 87–97, 2014, DOI: https://doi.org/10.1016/j.engstruct.2014.01.020
dc.relation[24] A. Kaveh, T. Bakhshpoori, and E. Afshari, "An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm," Comput. Struct., vol. 143, pp. 40–59, 2014, DOI: https://doi.org/10.1016/j.compstruc.2014.07.012
dc.relation[25] A. Kaveh and M. Ilchi Ghazaan, "Enhanced colliding bodies optimization for design problems with continuous and discrete variables," Adv. Eng. Softw., vol. 77, pp. 66–75, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.08.003
dc.relation[26] A. Kaveh, R. Sheikholeslami, S. Talatahari, and M. Keshvari-Ilkhichi, "Chaotic swarming of particles: A new method for size optimization of truss structures," Adv. Eng. Softw., vol. 67, pp. 136–147, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2013.09.006
dc.relation[27] A. Kaveh, B. Mirzaei, and A. Jafarvand, "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," Appl. Soft Comput. J., vol. 28, pp. 400–410, 2015, DOI: https://doi.org/10.1016/j.asoc.2014.11.056
dc.relation[28] A. Kaveh and V. R. Mahdavi, "Colliding Bodies Optimization method for optimum design of truss structures with continuous variables," Adv. Eng. Softw., vol. 70, pp. 1–12, 2014, DOI: https://doi.org/10.1016/j.advengsoft.2014.01.002
dc.relation[29] Y.-J. Zheng, "Water wave optimization: A new natureinspired metaheuristic," Comput. Oper. Res., vol. 55, pp. 1–11, 2015, DOI: https://doi.org/10.1016/j.cor.2014.10.008
dc.relation[30] C. Millán Páramo and E. Millán Romero, "Algoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas," INGE CUC, vol. 12, no. 2, pp. 9–16, 2016, DOI: https://doi.org/10.17981/ingecuc.12.2.2016.01
dc.relation111
dc.relation102
dc.relation2
dc.relation13
dc.relationINGE CUC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceINGE CUC
dc.sourcehttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1628
dc.subjectOptimización con ondas del agua
dc.subjectOptimización estructural
dc.subjectArmaduras
dc.subjectMetaheurística
dc.subjectWater wave optimization
dc.subjectStructural optimization
dc.subjectTruss structures
dc.subjectMetaheuristic
dc.titleDiseño óptimo de armaduras empleando optimización con ondas del agua
dc.titleOptimal design of truss structures using water wave optimization
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución