dc.creatorCOTRIM, LUCAS P.
dc.creatorJOSE, MARCOS M.
dc.creatorCABRAL, EDUARDO L.L.
dc.date2021
dc.date2022-03-15T15:41:33Z
dc.date2022-03-15T15:41:33Z
dc.date.accessioned2023-09-28T14:21:22Z
dc.date.available2023-09-28T14:21:22Z
dc.identifier2176-6649
dc.identifierhttp://repositorio.ipen.br/handle/123456789/32793
dc.identifier3
dc.identifier13
dc.identifier10.5335/rbca.v13i3.12091
dc.identifier0000-0001-6632-2692
dc.identifierSem Percentil
dc.identifierSem Percentil CiteScore
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9003012
dc.descriptionSince the establishment of robotics in industrial applications, industrial robot programming involves the repetitive and time-consuming process of manually specifying a fixed trajectory, resulting in machine idle time in production and the necessity of completely reprogramming the robot for different tasks. The increasing number of robotics applications in unstructured environments requires not only intelligent but also reactive controllers due to the unpredictability of the environment and safety measures, respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles??? positions or of the robot arm dynamics. The agent???s performance and algorithm convergence are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom (DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle placement. The DQN algorithm presented significantly better performance and reduced training time across all test projects, and the third reward function generated better agents for both algorithms.
dc.format42-53
dc.relationRevista Brasileira de Computa????o Aplicada
dc.rightsopenAccess
dc.subjectcontrol equipment
dc.subjectrobots
dc.subjectmanipulators
dc.subjectlearning
dc.subjectartificial intelligence
dc.subjectneural networks
dc.titleReinforcement learning control of robot manipulator
dc.typeArtigo de peri??dico
dc.coverageI


Este ítem pertenece a la siguiente institución